1,137 research outputs found

    Encoding hybridised institutions into first order logic

    Get PDF
    "First published online: 12 November 2014"A ‘hybridization’ of a logic, referred to as the base logic, consists of developing the characteristic features of hybrid logic on top of the respective base logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the semantics (i.e. possible worlds). By ‘hybridized institutions’ we mean the result of this process when logics are treated abstractly as institutions (in the sense of the institution theory of Goguen and Burstall). This work develops encodings of hybridized institutions into (many-sorted) first order logic (abbreviated FOL) as a ‘hybridization’ process of abstract encodings of institutions into FOL, which may be seen as an abstraction of the well known standard translation of modal logic into first order logic. The concept of encoding employed by our work is that of comorphism from institution theory, which is a rather comprehensive concept of encoding as it features encodings both of the syntax and of the semantics of logics/institutions. Moreover we consider the so-called theoroidal version of comorphisms that encode signatures to theories, a feature that accommodates a wide range of concrete applications. Our theory is also general enough to accomodate various constraints on the possible worlds semantics as well a wide variety of quantifications. We also provide pragmatic sufficient conditions for the conservativity of the encodings to be preserved through the hybridization process, which provides the possibility to shift a formal verification process from the hybridized institution to FOL.We thank both Till Mossakowski and Andrzej Tarlecki for the technical suggestion of using the predicates D. The work of the first author has been supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439. The work of the second author was funded by the European Regional Development Fund through the COMPETE Programme, and by the Portuguese Foundation for Science and Technology through the projects FCOMP-01-0124-FEDER-028923 and NORTE-01-0124-FEDER-000060

    Hybridization of institutions

    Get PDF
    Extended version including all proofsModal logics are successfully used as specification logics for reactive systems. However, they are not expressive enough to refer to individual states and reason about the local behaviour of such systems. This limitation is overcome in hybrid logics which introduce special symbols for naming states in models. Actually, hybrid logics have recently regained interest, resulting in a number of new results and techniques as well as applications to software specification. In this context, the first contribution of this paper is an attempt to ‘universalize’ the hybridization idea. Following the lines of [DS07], where a method to modalize arbitrary institutions is presented, the paper introduces a method to hybridize logics at the same institution-independent level. The method extends arbitrary institutions with Kripke semantics (for multi-modalities with arbitrary arities) and hybrid features. This paves the ground for a general result: any encoding (expressed as comorphism) from an arbitrary institution to first order logic (FOL) deter- mines a comorphism from its hybridization to FOL. This second contribution opens the possibility of effective tool support to specification languages based upon logics with hybrid features.Fundação para a Ciência e a Tecnologia (FCT

    Hybridisation at work

    Get PDF
    This paper presents the encoding of the hybridisation method into the HETS platform.FC

    A logic for n-dimensional hierarchical refinement

    Full text link
    Hierarchical transition systems provide a popular mathematical structure to represent state-based software applications in which different layers of abstraction are represented by inter-related state machines. The decomposition of high level states into inner sub-states, and of their transitions into inner sub-transitions is common refinement procedure adopted in a number of specification formalisms. This paper introduces a hybrid modal logic for k-layered transition systems, its first-order standard translation, a notion of bisimulation, and a modal invariance result. Layered and hierarchical notions of refinement are also discussed in this setting.Comment: In Proceedings Refine'15, arXiv:1606.0134

    Reuse and integration of specification logics: the hybridisation perspective

    Get PDF
    Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration.This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme, and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project POCI-01-0145-FEDER-006961. M. Martins was further supported by project UID/MAT/04106/2013. A. Madeira and R. Neves research was carried out in the context of a post-doc and a Ph.D. grant with references SFRH/BPD/103004/2014 and SFRH/BD/52234/2013, respectively. L.S. Barbosa is also supported by SFRH/BSAB/ 113890/2015

    When even the interface evolves ...

    Get PDF
    This paper extends the authors’ previous work on a formal approach to the specification of reconfigurable systems in which configurations are taken as local states in a suitable transition structure. The novelty is the explicit consideration that not only the realisation of a service may change from a configuration to another, but also the set of services provided and even their functionality, may themselves vary. In other words, interfaces may evolve, as well.FC
    corecore