1,055 research outputs found

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Medical image denoising using convolutional denoising autoencoders

    Full text link
    Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.Comment: To appear: 6 pages, paper to be published at the Fourth Workshop on Data Mining in Biomedical Informatics and Healthcare at ICDM, 201

    Enhancing Deep Learning Models through Tensorization: A Comprehensive Survey and Framework

    Full text link
    The burgeoning growth of public domain data and the increasing complexity of deep learning model architectures have underscored the need for more efficient data representation and analysis techniques. This paper is motivated by the work of (Helal, 2023) and aims to present a comprehensive overview of tensorization. This transformative approach bridges the gap between the inherently multidimensional nature of data and the simplified 2-dimensional matrices commonly used in linear algebra-based machine learning algorithms. This paper explores the steps involved in tensorization, multidimensional data sources, various multiway analysis methods employed, and the benefits of these approaches. A small example of Blind Source Separation (BSS) is presented comparing 2-dimensional algorithms and a multiway algorithm in Python. Results indicate that multiway analysis is more expressive. Contrary to the intuition of the dimensionality curse, utilising multidimensional datasets in their native form and applying multiway analysis methods grounded in multilinear algebra reveal a profound capacity to capture intricate interrelationships among various dimensions while, surprisingly, reducing the number of model parameters and accelerating processing. A survey of the multi-away analysis methods and integration with various Deep Neural Networks models is presented using case studies in different application domains.Comment: 34 pages, 8 figures, 4 table
    • …
    corecore