30,168 research outputs found

    Optimal Encodings for Range Min-Max and Top-k

    No full text
    In this paper we consider various encoding problems for range queries on arrays. In these problems, the goal is that the encoding occupies the information theoretic minimum space required to answer a particular set of range queries. Given an array A[1..n]A[1..n] a range top-kk query on an arbitrary range [i,j][1,n][i,j] \subseteq [1,n] asks us to return the ordered set of indices {l1,...,lk}\{l_1 ,...,l_k \} such that A[lm]A[l_m] is the mm-th largest element in A[i..j]A[i..j]. We present optimal encodings for range top-kk queries, as well as for a new problem which we call range min-max, in which the goal is to return the indices of both the minimum and maximum element in a range

    LRM-Trees: Compressed Indices, Adaptive Sorting, and Compressed Permutations

    Full text link
    LRM-Trees are an elegant way to partition a sequence of values into sorted consecutive blocks, and to express the relative position of the first element of each block within a previous block. They were used to encode ordinal trees and to index integer arrays in order to support range minimum queries on them. We describe how they yield many other convenient results in a variety of areas, from data structures to algorithms: some compressed succinct indices for range minimum queries; a new adaptive sorting algorithm; and a compressed succinct data structure for permutations supporting direct and indirect application in time all the shortest as the permutation is compressible.Comment: 13 pages, 1 figur

    Combined Data Structure for Previous- and Next-Smaller-Values

    Get PDF
    Let AA be a static array storing nn elements from a totally ordered set. We present a data structure of optimal size at most nlog2(3+22)+o(n)n\log_2(3+2\sqrt{2})+o(n) bits that allows us to answer the following queries on AA in constant time, without accessing AA: (1) previous smaller value queries, where given an index ii, we wish to find the first index to the left of ii where AA is strictly smaller than at ii, and (2) next smaller value queries, which search to the right of ii. As an additional bonus, our data structure also allows to answer a third kind of query: given indices i<ji<j, find the position of the minimum in A[i..j]A[i..j]. Our data structure has direct consequences for the space-efficient storage of suffix trees.Comment: to appear in Theoretical Computer Scienc

    Towards a compact representation of temporal rasters

    Get PDF
    Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal k^2 raster. It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 690941. Published in SPIRE 201

    Towards Tight Lower Bounds for Range Reporting on the RAM

    Full text link
    In the orthogonal range reporting problem, we are to preprocess a set of nn points with integer coordinates on a U×UU \times U grid. The goal is to support reporting all kk points inside an axis-aligned query rectangle. This is one of the most fundamental data structure problems in databases and computational geometry. Despite the importance of the problem its complexity remains unresolved in the word-RAM. On the upper bound side, three best tradeoffs exists: (1.) Query time O(lglgn+k)O(\lg \lg n + k) with O(nlgεn)O(nlg^{\varepsilon}n) words of space for any constant ε>0\varepsilon>0. (2.) Query time O((1+k)lglgn)O((1 + k) \lg \lg n) with O(nlglgn)O(n \lg \lg n) words of space. (3.) Query time O((1+k)lgεn)O((1+k)\lg^{\varepsilon} n) with optimal O(n)O(n) words of space. However, the only known query time lower bound is Ω(loglogn+k)\Omega(\log \log n +k), even for linear space data structures. All three current best upper bound tradeoffs are derived by reducing range reporting to a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous attempts at solving range reporting in the word-RAM. In this paper we make progress towards closing the gap between the upper and lower bounds for range reporting by proving cell probe lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters, excluding any further progress for range reporting using the ball-inheritance reduction
    corecore