5,866 research outputs found

    Biometric cryptosystem using online signatures

    Get PDF
    Biometric cryptosystems combine cryptography and biometrics to benefit from the strengths of both fields. In such systems, while cryptography provides high and adjustable security levels, biometrics brings in non-repudiation and eliminates the need to remember passwords or to carry tokens etc. In this work we present a biometric cryptosystems which uses online signatures, based on the Fuzzy Vault scheme of Jules et al. The Fuzzy Vault scheme releases a previously stored key when the biometric data presented for verification matches the previously stored template hidden in a vault. The online signature of a person is a behavioral biometric which is widely accepted as the formal way of approving documents, bank transactions, etc. As such, biometric-based key release using online signatures may have many application areas. We extract minutiae points (trajectory crossings, endings and points of high curvature) from online signatures and use those during the locking & unlocking phases of the vault. We present our preliminary results and demonstrate that high security level (128 bit encryption key length) can be achieved using online signatures

    Ensuring patients privacy in a cryptographic-based-electronic health records using bio-cryptography

    Get PDF
    Several recent works have proposed and implemented cryptography as a means to preserve privacy and security of patients health data. Nevertheless, the weakest point of electronic health record (EHR) systems that relied on these cryptographic schemes is key management. Thus, this paper presents the development of privacy and security system for cryptography-based-EHR by taking advantage of the uniqueness of fingerprint and iris characteristic features to secure cryptographic keys in a bio-cryptography framework. The results of the system evaluation showed significant improvements in terms of time efficiency of this approach to cryptographic-based-EHR. Both the fuzzy vault and fuzzy commitment demonstrated false acceptance rate (FAR) of 0%, which reduces the likelihood of imposters gaining successful access to the keys protecting patients protected health information. This result also justifies the feasibility of implementing fuzzy key binding scheme in real applications, especially fuzzy vault which demonstrated a better performance during key reconstruction
    corecore