33,993 research outputs found

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Internet Surveys by Direct Mailing: An Innovative Way of Collecting Data

    Get PDF
    This article describes a new method of collecting data by direct mailing via the Internet. Feasibility and capacities were evaluated through a worldwide opinion poll on global future risks of mankind and potential solutions. Within 1 day, a structured questionnaire was sent to 8,859 randomly selected e-mail addresses. One thousand seven hundred and thirteen were remailed properly completed, 90 within 4 days. Most respondents were residents of North America (64) and Europe (21 ), male (87), and 30 years old on average. Environmental destruction (52) was mentioned as the primary problem, followed by violence (45) and unemployment (45). Education (71 ) was the most frequently proposed solution to future problems. It is obvious that Internet surveys at this time are not repre sentative of the total population. However, they open new dimensions in the interrogation of experts and opinion leaders, especially considering their efficiency and potential for automation

    Acoustical structured illumination for super-resolution ultrasound imaging.

    Get PDF
    Structured illumination microscopy is an optical method to increase the spatial resolution of wide-field fluorescence imaging beyond the diffraction limit by applying a spatially structured illumination light. Here, we extend this concept to facilitate super-resolution ultrasound imaging by manipulating the transmitted sound field to encode the high spatial frequencies into the observed image through aliasing. Post processing is applied to precisely shift the spectral components to their proper positions in k-space and effectively double the spatial resolution of the reconstructed image compared to one-way focusing. The method has broad application, including the detection of small lesions for early cancer diagnosis, improving the detection of the borders of organs and tumors, and enhancing visualization of vascular features. The method can be implemented with conventional ultrasound systems, without the need for additional components. The resulting image enhancement is demonstrated with both test objects and ex vivo rat metacarpals and phalanges

    Adversarial Removal of Demographic Attributes from Text Data

    Full text link
    Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in -- and can be recovered from -- the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to -- and likely condition on -- demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features

    Multiplexing in Multi-Reflecting TOF MS

    Get PDF
    The paper presents an overview of original inventions, development and experimental results by the group of authors in the area of multi-reflecting time-of-flight mass spectrometry with Folded Flight Path (FFP®) (MR-TOFMS) with main focus on multiplexing methods for improving the analysis throughput, i.e. the amount of information per time unit. MR-TOF provides panoramic spectra (virtue of TOFMS), while significantly enhancing resolving power, thus, providing yet more information. Resolving power R=500,000 is demonstrated to resolve isobars and to improve mass accuracy to sub-ppm level. Encoded Frequent Pulsing (EFPTM) method improves sensitivity, expands dynamic range and opens multiple incarnations of parallel and fast tandem methods of analysis based on using ion traps, TOFMS and ion mobility for rapid and lossless parent ion separations

    Quality of experience driven control of interactive media stream parameters

    Get PDF
    In recent years, cloud computing has led to many new kinds of services. One of these popular services is cloud gaming, which provides the entire game experience to the users remotely from a server, but also other applications are provided in a similar manner. In this paper we focus on the option to render the application in the cloud, thereby delivering the graphical output of the application to the user as a video stream. In more general terms, an interactive media stream is set up over the network between the user's device and the cloud server. The main issue with this approach is situated at the network, that currently gives little guarantees on the quality of service in terms of parameters such as available bandwidth, latency or packet loss. However, for interactive media stream cases, the user is merely interested in the perceived quality, regardless of the underlaying network situation. In this paper, we present an adaptive control mechanism that optimizes the quality of experience for the use case of a race game, by trading off visual quality against frame rate in function of the available bandwidth. Practical experiments verify that QoE driven adaptation leads to improved user experience compared to systems solely taking network characteristics into account

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields
    • …
    corecore