277 research outputs found

    A native enhanced elastic extension tables multi-tenant database

    Get PDF
    A fundamental factor of digital image compression is the conversion processes. The intention of this process is to understand the shape of an image and to modify the digital image to a grayscale configuration where the encoding of the compression technique is operational. This article focuses on an investigation of compression algorithms for images with artistic effects. A key component in image compression is how to effectively preserve the original quality of images. Image compression is to condense by lessening the redundant data of images in order that they are transformed cost-effectively. The common techniques include discrete cosine transform (DCT), fast Fourier transform (FFT), and shifted FFT (SFFT). Experimental results point out compression ratio between original RGB images and grayscale images, as well as comparison. The superior algorithm improving a shape comprehension for images with grahic effect is SFFT technique

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing

    Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges

    Full text link
    [EN] If last decade viewed computational services as a utility then surely this decade has transformed computation into a commodity. Computation is now progressively integrated into the physical networks in a seamless way that enables cyber-physical systems (CPS) and the Internet of Things (IoT) meet their latency requirements. Similar to the concept of ¿platform as a service¿ or ¿software as a service¿, both cloudlets and fog computing have found their own use cases. Edge devices (that we call end or user devices for disambiguation) play the role of personal computers, dedicated to a user and to a set of correlated applications. In this new scenario, the boundaries between the network node, the sensor, and the actuator are blurring, driven primarily by the computation power of IoT nodes like single board computers and the smartphones. The bigger data generated in this type of networks needs clever, scalable, and possibly decentralized computing solutions that can scale independently as required. Any node can be seen as part of a graph, with the capacity to serve as a computing or network router node, or both. Complex applications can possibly be distributed over this graph or network of nodes to improve the overall performance like the amount of data processed over time. In this paper, we identify this new computing paradigm that we call Social Dispersed Computing, analyzing key themes in it that includes a new outlook on its relation to agent based applications. We architect this new paradigm by providing supportive application examples that include next generation electrical energy distribution networks, next generation mobility services for transportation, and applications for distributed analysis and identification of non-recurring traffic congestion in cities. The paper analyzes the existing computing paradigms (e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity of their definitions; and analyzes and discusses the relevant foundational software technologies, the remaining challenges, and research opportunities.Garcia Valls, MS.; Dubey, A.; Botti, V. (2018). Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. Journal of Systems Architecture. 91:83-102. https://doi.org/10.1016/j.sysarc.2018.05.007S831029

    Architecture for Smart Buildings Based on Fuzzy Logic and the OpenFog Standard

    Get PDF
    The combination of Artificial Intelligence and IoT technologies, the so-called AIoT, is expected to contribute to the sustainability of public and private buildings, particularly in terms of energy management, indoor comfort, as well as in safety and security for the occupants. However, IoT systems deployed on modern buildings may generate big amounts of data that cannot be efficiently analyzed and stored in the Cloud. Fog computing has proven to be a suitable paradigm for distributing computing, storage control, and networking functions closer to the edge of the network along the Cloud-to-Things continuum, improving the efficiency of the IoT applications. Unfortunately, it can be complex to integrate all components to create interoperable AIoT applications. For this reason, it is necessary to introduce interoperable architectures, based on standard and universal frameworks, to distribute consistently the resources and the services of AIoT applications for smart buildings. Thus, the rationale for this study stems from the pressing need to introduce complex computing algorithms aimed at improving indoor comfort, safety, and environmental conditions while optimizing energy consumption in public and private buildings. This article proposes an open multi-layer architecture aimed at smart buildings based on a standard framework, the OpenFog Reference Architecture (IEEE 1934–2018 standard). The proposed architecture was validated experimentally at the Faculty of Engineering of Vitoria-Gasteiz to improve indoor environmental quality using Fuzzy logic. Experimental results proved the viability and scalability of the proposed architecture.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II; to the Diputación Foral de Álava (DFA), through the project CONAVANTER; to the UPV/EHU, through the projects GIU20/063 and CBL 22APIN; and to the MobilityLab Foundation (CONV23/12), for supporting this work
    corecore