4,989 research outputs found

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+

    Full text link
    To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly used. However, as they produce huge amounts of data, only simple aggregates are stored. This removes outliers and fluctuations that could indicate problems. As a remedy, we present a model-based approach for managing time series with dimensions that exploits correlation in and among time series. Specifically, we propose compressing groups of correlated time series using an extensible set of model types within a user-defined error bound (possibly zero). We name this new category of model-based compression methods for time series Multi-Model Group Compression (MMGC). We present the first MMGC method GOLEMM and extend model types to compress time series groups. We propose primitives for users to effectively define groups for differently sized data sets, and based on these, an automated grouping method using only the time series dimensions. We propose algorithms for executing simple and multi-dimensional aggregate queries on models. Last, we implement our methods in the Time Series Management System (TSMS) ModelarDB (ModelarDB+). Our evaluation shows that compared to widely used formats, ModelarDB+ provides up to 13.7 times faster ingestion due to high compression, 113 times better compression due to the adaptivity of GOLEMM, 630 times faster aggregates by using models, and close to linear scalability. It is also extensible and supports online query processing.Comment: 12 Pages, 28 Figures, and 1 Tabl

    Multi-resolution Storage and Search in Sensor Networks

    Get PDF

    Survey of time series database technology

    Get PDF
    This report has been prepared by Epimorphics Ltd. as part of the ENTRAIN project (NERC grant number NE/S016244/1) which is a feasibility project within the “NERC Constructing a Digital Environment Strategic Priorities Fund Programme”. The Centre for Ecology and Hydrology(CEH) is a research organisation focusing on land and freshwater ecosystems and their interaction with the atmosphere. The organization manages a number of sensor networks to monitor the environment, and also handles large databases of 3rd party data (e.g. river flows measured by the Environment Agency and equivalents in Scotland and Wales). Data from these networks is stored and made available to users, both internally (through direct query of databases, and externally via web-services). The ENTRAIN project aims to address a number of issues in relation to sensor data storage and integration, using a number of hydrological datasets to help define use cases: COSMOS-UK (a network of ~50 sites measuring soil moisture and meteorological variables at 1-30 minute resolutions); the CEH Greenhouse Gas (GHG) network (~15 sites measuring sub-second fluxes of gases and moisture, subsequently processed up to 30-minute aggregations); the Thames Initiative (a database of weekly and hourly water quality samples from sites around the Thames basin). In addition this report considers the UK National River Flow Archive, a database of daily river flows and catchment rainfall derived by regional environmental agencies from 15-minute measurements of river levels and flows. CEH commissioned this report to survey alternative technologies for storing sensor data that scale better, could manage larger data volumes more easily and less expensively, and that might be readily deployed on different infrastructures

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges
    corecore