64 research outputs found

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    ENERGY CONSUMPTION IN WIRELESS SENSOR NETWORKS USING DATA FUSION ASSURANCE

    Get PDF
    ABSTRACT Data fusion techniques reduce total network traffic in a wireless sensor network, since data fusion can integrate multiple raw data sets into one fused data set. However, the security or assurance of the data requires more processing power and is an important issue. Increasing the security of the fusion data increases factors such as power consumption, and packet overhead. Therefore any data fusion assurance scheme must be power efficient as well as secure. There are currently several methods of data fusion assurance that have been proposed. Therefore, this paper looks at the current data fusion assurance methods and proposes new schemes focused on reducing power consumption. In this paper, several data fusion assurance schemes are also compared to determine which scheme is the most energy efficient

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Performance analysis of bee-hive routing in multi-radio networks

    Get PDF
    In recent years, wireless communication technology has reduced the distance between people and has hence become a significant part of our lives. Two such technologies are WiFi(IEEE 802.11) and WiMAX(IEEE 802.16) where the latter is a long range system covering many kilometers, whereas former is a synonym for WLAN providing a coverage of only short ranges. This work describes the implementation of a framework in which a multi-hop, ad-hoc network is deployed with hybrid nodes to enhance network throughput. The data traffic received is split between the WiFi and WiMAX radios on the basis of th e split coefficient value statically. The routing algorithm being implemented in this paper is the be e-hive algorithm. Bee-hive algorithm is a multi-path routing algorithm inspired by the social behavior of swarms of bees. It is dynamic, robust and flexible yet simple algorithm which can prove helpful for optimal

    Techniques for Low-latency in Software-defined Radio-based Networks

    Get PDF
    Decreased budgets have pushed the United States Air Force towards using existing systems in new ways. The use of unmanned aerial vehicle swarms is one example of reuse of existing systems. One problem with the increased utilization of these swarms is the congestion of the electromagnetic spectrum. Software-defined or cognitive radios have been proposed as a basis for a potential robust communications solution. The present research aims to develop and test a genetic algorithm-based cognitive engine to begin looking at real-time engines that could be used in future swarms. Here, latency is the optimization objective of primary importance. In testing the engine, particular items of interest include the number of solutions evaluated in a given bound and the engine\u27s reliability in yielding acceptable network performance. Initial experiments indicate the engine can consider significant portions of the search space within a relatively small bound and that the engine is efficient at finding highly fit solutions. Future work for this research includes evaluating how well high fitness correlates to acceptable performance and testing the engine with additional noise floors

    Concept and design of the hybrid distributed embedded systems testbed

    Get PDF
    Wireless mesh networks are an emerging and versatile communication technology. The most common application of these networks is to provide access of any number of users to the world wide Internet. They can be set up by Internet service providers or even individuals joined in communities. Due to the wireless medium that is shared by all participants, effects like short-time fading, or the multi-hop property of the network topology many issues are still in the focus of research. Testbeds are a powerful tool to study wireless mesh networks as close as possible to real world application scenarios. In this technical report we describe the design, architecture, and implementation of our work-in-progress wireless testbed at Freie Universität Berlin consisting of 100 mesh routers that span multiple buildings. The testbed is hybrid as it combines wireless mesh network routers with a wireless sensor network

    CAMA: Efficient Modeling of the Capture Effect for Low Power Wireless Networks

    Get PDF
    Network simulation is an essential tool for the design and evaluation of wireless network protocols, and realistic channel modeling is essential for meaningful analysis. Recently, several network protocols have demonstrated substantial network performance improvements by exploiting the capture effect, but existing models of the capture effect are still not adequate for protocol simulation and analysis. Physical-level models that calculate the signal-to-interference-plus-noise ratio (SINR) for every incoming bit are too slow to be used for large-scale or long-term networking experiments, and link-level models such as those currently used by the NS2 simulator do not accurately predict protocol performance. In this article, we propose a new technique called the capture modeling algorithm (CAMA) that provides the simulation fidelity of physical-level models while achieving the simulation time of link-level models. We confirm the validity of CAMA through comparison with the empirical traces of the experiments conducted by various numbers of CC1000 and CC2420-based nodes in different scenarios. Our results indicate that CAMA can accurately predict the packet reception, corruption, and collision detection rates of real radios, while existing models currently used by the NS2 simulator produce substantial prediction error

    Efficient Control Message Dissemination in Dense Wireless Lighting Networks

    Get PDF
    Modern lighting systems using LED light sources lead to dense lighting installations. The control of such systems using wireless Machine-to-Machine (M2M) where standard LED light sources are replaced by wirelessly controllable LED light sources create new problems which are investigated in this thesis. Current approaches for control message transmission is such networks are based on broadcasting messages among luminaires. However, adequate communication performance - in particular, sufficiently low latency and synchronicity - is difficult to ensure in such networks, in particular, if the network is part of a wireless building management system and carries not only low-latency broadcast messages but also collects data from sensors. In this thesis, the problem of simultaneously controlling dense wireless lighting control networks with a higher number of luminaires is addressed. Extensive computer simulation shows that current state-of-the-art protocols are not suitable for lighting control applications, especially if complex applications are required such as dimming or colour tuning. The novel D³LC-Suite is proposed, which is specially designed for dense wireless lighting control networks. This suite includes three sub-protocols. First, a protocol to organize a network in form of a cluster tree named CIDER. To ensure that intra-cluster messages can be exchanged simultaneously, a weighted colouring algorithm is applied to reduce the inter cluster interference. To disseminate efficiently control messages a protocol is proposed named RLL. The D³LC-Suite is evaluated and validated using different methods. A convergence analysis show that CIDER is able to form a network in a matter of minutes. Simulation results of RLL indicate that this protocol is well suited for dense wireless applications. In extensive experiments, it is shown that the D³LC-Suite advances the current state-of-the-art in several aspects. The suite is able to deliver control messages across multiple hops meeting the requirements of lighting applications. Especially, it provides a deterministic latency, very promising packet loss ratios in low interference environments, and mechanisms for simultaneous message delivery which is important in terms of Quality of Experience (QoE
    corecore