5,789 research outputs found

    Transforming healthcare with the synergy of biotechnology and information technology

    Get PDF
    We explore the integration of biotechnology and information technology in healthcare innovation. The convergence of these fields has revolutionized diagnostics, therapeutics and patient management. Biotechnology advancements, such as genomics and molecular diagnostics, enable personalized medicine, while information technology facilitates data management and analysis. The integration also extends healthcare access through telemedicine and remote patient monitoring, enhancing healthcare delivery in underserved areas. Challenges include data security and privacy concerns. Looking ahead, the integration of biotechnology and information technology holds immense potential for further healthcare innovation, transforming patient outcomes and healthcare delivery

    Molecular imaging: spawning a new melting-pot for biomedical imaging

    Get PDF
    Predicting the future is a dangerous undertaking at best, and not meant for the faint-hearted. However, viewing the advances in molecular medicine, genomics and proteomics, it is easy to comprehend those who believe that molecular imaging methods will open up new vistas for medical imaging. The knock on effect will impact our capacity to diagnose and treat diseases. Anatomically detectable abnormalities, which have historically been the basis of the practice of radiology, will soon be replaced by molecular imaging methods that will reflect the under expression or over expression of certain genes which occur in almost every disease. Molecular imaging can then be resorted to so that early diagnosis and characterisation of disease can offer improved specificity. Given the growing importance of molecular medicine, imagers will find it profitable to educate themselves on molecular targeting, molecular therapeutics and the role of imaging in both areas

    Evaluating the Potential of Leading Large Language Models in Reasoning Biology Questions

    Full text link
    Recent advances in Large Language Models (LLMs) have presented new opportunities for integrating Artificial General Intelligence (AGI) into biological research and education. This study evaluated the capabilities of leading LLMs, including GPT-4, GPT-3.5, PaLM2, Claude2, and SenseNova, in answering conceptual biology questions. The models were tested on a 108-question multiple-choice exam covering biology topics in molecular biology, biological techniques, metabolic engineering, and synthetic biology. Among the models, GPT-4 achieved the highest average score of 90 and demonstrated the greatest consistency across trials with different prompts. The results indicated GPT-4's proficiency in logical reasoning and its potential to aid biology research through capabilities like data analysis, hypothesis generation, and knowledge integration. However, further development and validation are still required before the promise of LLMs in accelerating biological discovery can be realized

    The EHA research roadmap: anemias

    Get PDF
    In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by one to two section editors who were leading international experts in the field. In the five years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The eleven EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cellbased Immune Therapies; and Gene Therap

    The Long and Winding Road to Cardiac Regeneration

    Get PDF
    Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases

    Manipulating immune cells — a therapeutic strategy for cancer and inflammatory disease

    Get PDF
    Despite the increasing application of immunotherapy for a variety of cancers, only a minority of patients obtain durable therapeutic responses. The limited therapeutic efficiency remains a significant challenge for the further application of immunotherapy. One of the reasons could be attributed to the fact that tumors employ diverse strategies to evade tumor-specific immunity. Immunosuppressive cells in the tumor microenvironment play an essential role in protecting the tumor from immune attacks and attenuate the efficacy of immunotherapy. Thus, targeting immunosuppressive cells emerged as a promising strategy to improve the efficacy of cancer immunotherapy. This thesis presents studies on the manipulation of immune cells as a therapeutic strategy to enhance the efficacy of cancer immunotherapy but also as an opposite strategy to resolve inflammatory diseases

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field
    corecore