385 research outputs found

    Validation of H-P2PSIP, a scalable solution for interoperability among different overlay networks

    Get PDF
    This paper reports the results of experiments from an implementation of H-P2PSIP, a hierarchical overlay architecture based on the ongoing work in the IETF P2PSIP Working Group. This architecture allows the exchange of information among different independent overlay networks through the use of a two-layer architecture based on super-peers and hierarchical identifiers. The validation of this proposal is based on a Linux based real implementation where we have used four different scenarios with 1,000 peers in order to perform different experiments. We have obtained results for different parameters such as routing performance (number of hops), delay, routing state (number of overlay routing entries) and bandwidth consumption.This research was supported in part by the European Commission Seventh Framework Programme under grant agreement n 25774 (TREND Network of Excellence), Comunidad de Madrid grant S-2009/TIC-1468 (MEDIANET project) and Spanish MICINN grant TEC2011-29688-C02-02 (eeCONTENT project).Publicad

    Benefits of an Implementation of H-P2PSIP

    Get PDF
    [Paper presented at:] Second International Conference on Advances in P2P Systems. AP2PS 2010. October 25-30, Florence (Italy)In this paper, we report on the results of experiments with an implementation of H-P2PSIP, which allows the exchange of information among different DHTs (Distributed Hash Tables) making use of a hierarchical architecture. This paper validates our previous H-P2PSIP proposal in an environment with a real TCP/IP stack close to a real scenario. The results show how the benefits of this real H-P2PSIP implementation in terms of routing performance (number of hops), delay and routing state (number of routing entries) are better than a flat DHT overlay network and how the exchange of information among different DHT overlay networks is feasible.This work has been supported by the FP7 TREND Grant (agreement No. 257740) and by the Regional Government of Madrid under the MEDIANET project (CAM, S2009/TIC-1468).European Community's Seventh Framework ProgramPublicad

    Benefits on using H-P2PSIP in mobile environments

    Get PDF
    Proceeding of: VIII Jornadas de Ingeniería Telemática (JITEL '09), Universidad Politécnica de Cartagena, Cartagena, Murcia, 15-17 de septiembre de 2009The use of peer-to-peer technologies is increasing everyday and the improvement of mobility technologies is a reality. Now, it is expected that peer-to-peer applications run on mobile devices, but the conjunction of these two technologies is an open research issue. The user mobility impacts on the churn suffered by peer-to-peer networks and consequently it impacts on their performance. Therefore, some mechanisms are necessary to minimize this undesirable effect. Our proposal tries to solve this problem by using a Hierarchical P2PSIP architecture where different overlays are used for different peer mobility behaviours and they are interconnected between them through an interconnection overlay. In this way it is possible for peers that share the same behaviour to choose a certain protocol or to optimize some functionality that suits best with their mobility situation, while maintaining connectivity with all peers.This research work is being supported by the European Commission under the IST Content Network of Excellence3 (FP6-2006-IST-038423), by the Regional Government of Madrid under the BioGridNet4 project (CAM, S-0505/TIC- 0101) and by the Ministry of Science and Innovation under the CONPARTE project (MEC, TEC2007-67966-C03-03/TCM).No publicad

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Use of locator/identifier separation to improve the future internet routing system

    Get PDF
    The Internet evolved from its early days of being a small research network to become a critical infrastructure many organizations and individuals rely on. One dimension of this evolution is the continuous growth of the number of participants in the network, far beyond what the initial designers had in mind. While it does work today, it is widely believed that the current design of the global routing system cannot scale to accommodate future challenges. In 2006 an Internet Architecture Board (IAB) workshop was held to develop a shared understanding of the Internet routing system scalability issues faced by the large backbone operators. The participants documented in RFC 4984 their belief that "routing scalability is the most important problem facing the Internet today and must be solved." A potential solution to the routing scalability problem is ending the semantic overloading of Internet addresses, by separating node location from identity. Several proposals exist to apply this idea to current Internet addressing, among which the Locator/Identifier Separation Protocol (LISP) is the only one already being shipped in production routers. Separating locators from identifiers results in another level of indirection, and introduces a new problem: how to determine location, when the identity is known. The first part of our work analyzes existing proposals for systems that map identifiers to locators and proposes an alternative system, within the LISP ecosystem. We created a large-scale Internet topology simulator and used it to compare the performance of three mapping systems: LISP-DHT, LISP+ALT and the proposed LISP-TREE. We analyzed and contrasted their architectural properties as well. The monitoring projects that supplied Internet routing table growth data over a large timespan inspired us to create LISPmon, a monitoring platform aimed at collecting, storing and presenting data gathered from the LISP pilot network, early in the deployment of the LISP protocol. The project web site and collected data is publicly available and will assist researchers in studying the evolution of the LISP mapping system. We also document how the newly introduced LISP network elements fit into the current Internet, advantages and disadvantages of different deployment options, and how the proposed transition mechanism scenarios could affect the evolution of the global routing system. This work is currently available as an active Internet Engineering Task Force (IETF) Internet Draft. The second part looks at the problem of efficient one-to-many communications, assuming a routing system that implements the above mentioned locator/identifier split paradigm. We propose a network layer protocol for efficient live streaming. It is incrementally deployable, with changes required only in the same border routers that should be upgraded to support locator/identifier separation. Our proof-of-concept Linux kernel implementation shows the feasibility of the protocol, and our comparison to popular peer-to-peer live streaming systems indicates important savings in inter-domain traffic. We believe LISP has considerable potential of getting adopted, and an important aspect of this work is how it might contribute towards a better mapping system design, by showing the weaknesses of current favorites and proposing alternatives. The presented results are an important step forward in addressing the routing scalability problem described in RFC 4984, and improving the delivery of live streaming video over the Internet
    corecore