1,599 research outputs found

    The Boston University Photonics Center annual report 2016-2017

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2016-2017 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has undoubtedly been the Photonics Center’s best year since I became Director 10 years ago. In the following pages, you will see highlights of the Center’s activities in the past year, including more than 100 notable scholarly publications in the leading journals in our field, and the attraction of more than 22 million dollars in new research grants/contracts. Last year I had the honor to lead an international search for the first recipient of the Moustakas Endowed Professorship in Optics and Photonics, in collaboration with ECE Department Chair Clem Karl. This professorship honors the Center’s most impactful scholar and one of the Center’s founding visionaries, Professor Theodore Moustakas. We are delighted to haveawarded this professorship to Professor Ji-Xin Cheng, who joined our faculty this year.The past year also marked the launch of Boston University’s Neurophotonics Center, which will be allied closely with the Photonics Center. Leading that Center will be a distinguished new faculty member, Professor David Boas. David and I are together leading a new Neurophotonics NSF Research Traineeship Program that will provide $3M to promote graduate traineeships in this emerging new field. We had a busy summer hosting NSF Sites for Research Experiences for Undergraduates, Research Experiences for Teachers, and the BU Student Satellite Program. As a community, we emphasized the theme of “Optics of Cancer Imaging” at our annual symposium, hosted by Darren Roblyer. We entered a five-year second phase of NSF funding in our Industry/University Collaborative Research Center on Biophotonic Sensors and Systems, which has become the centerpiece of our translational biophotonics program. That I/UCRC continues to focus on advancing the health care and medical device industries

    Cross-Media Wireless Made Easier: Tuning Media Interfaces with Flexible Metasurfaces

    Full text link
    Emerging wireless IoT applications increasingly venture beyond over-the-air communication, such as deep-tissue networking for implantable sensors, air-water communication for ocean monitoring, and soil sensing. These applications face the fundamental challenge of significant power loss due to reflection at media interfaces. We present RF-Mediator, a programmable metasurface system placed at media interfaces to virtually mask the presence of the physical boundary. It is designed as a single-layer metasurface comprising arrays of varactor-based elements. By tuning the bias voltage element-wise, the surface mediates between media on both sides dynamically and beamforms towards the endpoint to boost transmission through the interface, as if no media interface existed. The control algorithm determines the surface configuration by probing the search space efficiently. We fabricate the surface on a thin, flexible substrate, and experiment with several cross-media setups. Extensive evaluation shows that RF-Mediator provides a median power gain of 8 dB for air-to-tissue links and up to 30 dB for cross-media backscatter links

    Comparative analysis of energy transfer mechanisms for neural implants

    Get PDF
    As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants

    An Investigation of Neural Stimulation Efficiency With Gaussian Waveforms

    Get PDF
    Objective: Previous computational studies predict that Gaussian shaped waveforms use the least energy to activate nerves. The primary goal of this study was to examine the claimed potential of up to 60% energy savings with these waveforms over a range of phase widths (50- 200 μs200~\mu \text{s} ) in an animal model. Methods: The common peroneal nerve of anaesthetized rats was stimulated via monopolar and bipolar electrodes with single stimuli. The isometric peak twitch force of the extensor digitorum longus muscle was recorded to indicate the extent of neural activation. The energy consumption, charge injection and maximum instantaneous power values required to reach 50% neural activation were compared between Gaussian pulses and standard rectangular stimuli. Results: Energy savings in the 50- 200 μs200~\mu \text{s} range of phase widths did not exceed 17% and were accompanied by significant increases in maximum instantaneous power of 110-200%. Charge efficiency was found to be increased over the whole range of tested phase widths with Gaussian compared to rectangular pulses and reached up to 55% at 1ms phase width. Conclusion: These findings challenge the claims of up to 60% energy savings with Gaussian like stimulation waveforms. The moderate energy savings achieved with the novel waveform are accompanied with considerable increases in maximal instantaneous power. Larger power sources would therefore be required, and this opposes the trend for implant miniaturization. Significance: This is the first study to comprehensively investigate stimulation efficiency of Gaussian waveforms. It sheds new light on the practical potential of such stimulation waveforms

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe
    • …
    corecore