374 research outputs found

    Policy-based autonomic control service

    Get PDF
    Recently, there has been a considerable interest in policy-based, goal-oriented service management and autonomic computing. Much work is still required to investigate designs and policy models and associate meta-reasoning systems for policy-based autonomic systems. In this paper we outline a proposed autonomic middleware control service used to orchestrate selfhealing of distributed applications. Policies are used to adjust the systems autonomy and define self-healing strategies to stabilize/correct a given system in the event of failures

    Autonomic Computing: the natural fusion of Soft Computing and Hard Computing

    Get PDF
    Abstract- Autonomic Computing is emerging as a significant new approach in the design of computing systems. Its overall goal is the creation of Self-Managing Systems. In order to achieve this, Hard and So3 Computing are required. The benefits from utilizing Soy Computing include their ability to handle imprecision, uncertainty and partial truth that is inherently present in any complex real world problem accompanied by the practicable benefits of Hard Computing namely the stability of highly predictable solutions and typically low computational burden. This paper motivates the proposition that the successful creation of Autonomic Systems requires a fusion of Soj? Computing and Hard Computing

    Personal Autonomic Computing Self-Healing Tool

    Get PDF

    Personal Autonomic Computing Reflex Reactions and Self-Healing

    Get PDF
    The overall goal of this research is to improve theself-awareness and environment-awareness aspect of personal au-tonomic computing (PAC) to facilitate self-managing capabilitiessuch as self-healing. Personal computing offers unique challengesfor self-management due to its multiequipment, multisituation, andmultiuser nature. The aim is to develop a support architecture formultiplatform working, based on autonomic computing conceptsand techniques. Of particular interest is collaboration among per-sonal systems to take a shared responsibility for self-awareness andenvironment awareness. Concepts mirroring human mechanisms,such as reflex reactions and the use ofvital signsto assess oper-ational health, are used in designing and implementing the PACarchitecture. As proof of concept, this was implemented as a self-healing tool utilizing a pulse monitor and a vital signs health moni-tor within the autonomic manager. This type of functionality opensnew opportunities to provide self-configuring, self-optimizing, andself-protecting, as well as self-healing autonomic capabilities topersonal computing

    Automatic performance optimisation of component-based enterprise systems via redundancy

    Get PDF
    Component technologies, such as J2EE and .NET have been extensively adopted for building complex enterprise applications. These technologies help address complex functionality and flexibility problems and reduce development and maintenance costs. Nonetheless, current component technologies provide little support for predicting and controlling the emerging performance of software systems that are assembled from distinct components. Static component testing and tuning procedures provide insufficient performance guarantees for components deployed and run in diverse assemblies, under unpredictable workloads and on different platforms. Often, there is no single component implementation or deployment configuration that can yield optimal performance in all possible conditions under which a component may run. Manually optimising and adapting complex applications to changes in their running environment is a costly and error-prone management task. The thesis presents a solution for automatically optimising the performance of component-based enterprise systems. The proposed approach is based on the alternate usage of multiple component variants with equivalent functional characteristics, each one optimized for a different execution environment. A management framework automatically administers the available redundant variants and adapts the system to external changes. The framework uses runtime monitoring data to detect performance anomalies and significant variations in the application's execution environment. It automatically adapts the application so as to use the optimal component configuration under the current running conditions. An automatic clustering mechanism analyses monitoring data and infers information on the components' performance characteristics. System administrators use decision policies to state high-level performance goals and configure system management processes. A framework prototype has been implemented and tested for automatically managing a J2EE application. Obtained results prove the framework's capability to successfully manage a software system without human intervention. The management overhead induced during normal system execution and through management operations indicate the framework's feasibility

    Enabling virtualization technologies for enhanced cloud computing

    Get PDF
    Cloud Computing is a ubiquitous technology that offers various services for individual users, small businesses, as well as large scale organizations. Data-center owners maintain clusters of thousands of machines and lease out resources like CPU, memory, network bandwidth, and storage to clients. For organizations, cloud computing provides the means to offload server infrastructure and obtain resources on demand, which reduces setup costs as well as maintenance overheads. For individuals, cloud computing offers platforms, resources and services that would otherwise be unavailable to them. At the core of cloud computing are various virtualization technologies and the resulting Virtual Machines (VMs). Virtualization enables cloud providers to host multiple VMs on a single Physical Machine (PM). The hallmark of VMs is the inability of the end-user to distinguish them from actual PMs. VMs allow cloud owners such essential features as live migration, which is the process of moving a VM from one PM to another while the VM is running, for various reasons. Features of the cloud such as fault tolerance, geographical server placement, energy management, resource management, big data processing, parallel computing, etc. depend heavily on virtualization technologies. Improvements and breakthroughs in these technologies directly lead to introduction of new possibilities in the cloud. This thesis identifies and proposes innovations for such underlying VM technologies and tests their performance on a cluster of 16 machines with real world benchmarks. Specifically the issues of server load prediction, VM consolidation, live migration, and memory sharing are attempted. First, a unique VM resource load prediction mechanism based on Chaos Theory is introduced that predicts server workloads with high accuracy. Based on these predictions, VMs are dynamically and autonomously relocated to different PMs in the cluster in an attempt to conserve energy. Experimental evaluations with a prototype on real world data- center load traces show that up to 80% of the unused PMs can be freed up and repurposed, with Service Level Objective (SLO) violations as little as 3%. Second, issues in live migration of VMs are analyzed, based on which a new distributed approach is presented that allows network-efficient live migration of VMs. The approach amortizes the transfer of memory pages over the life of the VM, thus reducing network traffic during critical live migration. The prototype reduces network usage by up to 45% and lowers required time by up to 40% for live migration on various real-world loads. Finally, a memory sharing and management approach called ACE-M is demonstrated that enables VMs to share and utilize all the memory available in the cluster remotely. Along with predictions on network and memory, this approach allows VMs to run applications with memory requirements much higher than physically available locally. It is experimentally shown that ACE-M reduces the memory performance degradation by about 75% and achieves a 40% lower network response time for memory intensive VMs. A combination of these innovations to the virtualization technologies can minimize performance degradation of various VM attributes, which will ultimately lead to a better end-user experience

    Assured and Correct Dynamic Update of Controllers

    Get PDF
    We present a general approach to specifying correctness criteria for dynamic update and a technique for automatically computing a controller that handles the transition from the old to the new specification, assuring that the system will reach a state in which such a transition can correctly occur. Indeed, using controller synthesis we show how to automatically build a controller that guarantees both progress towards update and safe update.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Assured and Correct Dynamic Update of Controllers

    Get PDF
    We present a general approach to specifying correctness criteria for dynamic update and a technique for automatically computing a controller that handles the transition from the old to the new specification, assuring that the system will reach a state in which such a transition can correctly occur. Indeed, using controller synthesis we show how to automatically build a controller that guarantees both progress towards update and safe update.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore