115 research outputs found

    The application of impantable sensors in the musculoskeletal system: a review

    Get PDF
    As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application

    Comparative analysis of energy transfer mechanisms for neural implants

    Get PDF
    As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants

    Advanced Materials and Technologies in Nanogenerators

    Get PDF
    This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence

    Neuromorphic Neuromodulation: Towards the next generation of on-device AI-revolution in electroceuticals

    Full text link
    Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of artificial intelligence (AI) holds immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) processing, low power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for personalized neurostimulation depends on back-telemetry of data to external systems (e.g. cloud-based medical mesosystems and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the solution-in-the-making to resource-constraint implantable neuromodulation systems. This could lead to a new breed of closed-loop responsive and personalised feedback, which we describe as Neuromorphic Neuromodulation. This can empower precise and adaptive modulation strategies by integrating neuromorphic AI as tightly as possible to the site of the sensors and stimulators. This paper presents a perspective on the potential of Neuromorphic Neuromodulation, emphasizing its capacity to revolutionize implantable brain-machine microsystems and significantly improve patient-specificity.Comment: 17 page

    Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users

    Get PDF
    Biomedical engineering has seen a rapid growth in recent times, where the aim to facilitate and equip humans with the latest technology has become widespread globally. From high-tech equipment ranging from CT scanners, MRI equipment, and laser treatments, to the design, creation, and implementation of artificial body parts, the field of biomedical engineering has significantly contributed to mankind. Biomedical engineering has facilitated many of the latest developments surrounding human mobility, with advancement in mobility aids improving human movement for people with compromised mobility either caused by an injury or health condition. A review of the literature indicated that mobility aids, especially walking sticks, and appropriate training for their use, are generally prescribed by allied health professionals (AHP) to walking stick users for rehabilitation and activities of daily living (ADL). However, feedback from AHP is limited to the clinical environment, leaving walking stick users vulnerable to falls and injuries due to incorrect usage. Hence, to mitigate the risk of falls and injuries, and to facilitate a routine appraisal of individual patient’s usage, a simple, portable, robust, and reliable tool was developed which provides the walking stick users with real-time feedback upon incorrect usage during their activities of daily living (ADL). This thesis aimed to design and develop a smart walking stick technology: Biofeedback stick technology (BfT). The design incorporates the approach of patient and public involvement (PPI) in the development of BfT to ensure that BfT was developed as per the requirements of walking stick users and AHP recommendations. The newly developed system was tested quantitatively for; validity, reliability, and reproducibility against gold standard equipment such as the 3D motion capture system, force plates, optical measurement system for orientation, weight bearing, and step count. The system was also tested qualitatively for its usability by conducting semi-informal interviews with AHPs and walking stick users. The results of these studies showed that the newly developed system has good accuracy, reported above 95% with a maximum inaccuracy of 1°. The data reported indicates good reproducibility. The angles, weight, and steps recorded by the system during experiments are within the values published in the literature. From these studies, it was concluded that, BfT has the potential to improve the lives of walking stick users and that, with few additional improvements, appropriate approval from relevant regulatory bodies, and robust clinical testing, the technology has a huge potential to carve its way to a commercial market

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Studies on Spinal Fusion from Computational Modelling to ‘Smart’ Implants

    Full text link
    Low back pain, the worldwide leading cause of disability, is commonly treated with lumbar interbody fusion surgery to address degeneration, instability, deformity, and trauma of the spine. Following fusion surgery, nearly 20% experience complications requiring reoperation while 1 in 3 do not experience a meaningful improvement in pain. Implant subsidence and pseudarthrosis in particular present a multifaceted challenge in the management of a patient’s painful symptoms. Given the diversity of fusion approaches, materials, and instrumentation, further inputs are required across the treatment spectrum to prevent and manage complications. This thesis comprises biomechanical studies on lumbar spinal fusion that provide new insights into spinal fusion surgery from preoperative planning to postoperative monitoring. A computational model, using the finite element method, is developed to quantify the biomechanical impact of temporal ossification on the spine, examining how the fusion mass stiffness affects loads on the implant and subsequent subsidence risk, while bony growth into the endplates affects load-distribution among the surrounding spinal structures. The computational modelling approach is extended to provide biomechanical inputs to surgical decisions regarding posterior fixation. Where a patient is not clinically pre-disposed to subsidence or pseudarthrosis, the results suggest unilateral fixation is a more economical choice than bilateral fixation to stabilise the joint. While finite element modelling can inform pre-surgical planning, effective postoperative monitoring currently remains a clinical challenge. Periodic radiological follow-up to assess bony fusion is subjective and unreliable. This thesis describes the development of a ‘smart’ interbody cage capable of taking direct measurements from the implant for monitoring fusion progression and complication risk. Biomechanical testing of the ‘smart’ implant demonstrated its ability to distinguish between graft and endplate stiffness states. The device is prepared for wireless actualisation by investigating sensor optimisation and telemetry. The results show that near-field communication is a feasible approach for wireless power and data transfer in this setting, notwithstanding further architectural optimisation required, while a combination of strain and pressure sensors will be more mechanically and clinically informative. Further work in computational modelling of the spine and ‘smart’ implants will enable personalised healthcare for low back pain, and the results presented in this thesis are a step in this direction

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163
    • …
    corecore