104 research outputs found

    Perception Intelligence Integrated Vehicle-to-Vehicle Optical Camera Communication.

    Get PDF
    Ubiquitous usage of cameras and LEDs in modern road and aerial vehicles open up endless opportunities for novel applications in intelligent machine navigation, communication, and networking. To this end, in this thesis work, we hypothesize the benefit of dual-mode usage of vehicular built-in cameras through novel machine perception capabilities combined with optical camera communication (OCC). Current key conception of understanding a line-of-sight (LOS) scenery is from the aspect of object, event, and road situation detection. However, the idea of blending the non-line-of-sight (NLOS) information with the LOS information to achieve a see-through vision virtually is new. This improves the assistive driving performance by enabling a machine to see beyond occlusion. Another aspect of OCC in the vehicular setup is to understand the nature of mobility and its impact on the optical communication channel quality. The research questions gathered from both the car-car mobility modelling, and evaluating a working setup of OCC communication channel can also be inherited to aerial vehicular situations like drone-drone OCC. The aim of this thesis is to answer the research questions along these new application domains, particularly, (i) how to enable a virtual see-through perception in the car assisting system that alerts the human driver about the visible and invisible critical driving events to help drive more safely, (ii) how transmitter-receiver cars behaves while in the mobility and the overall channel performance of OCC in motion modality, (iii) how to help rescue lost Unmanned Aerial Vehicles (UAVs) through coordinated localization with fusion of OCC and WiFi, (iv) how to model and simulate an in-field drone swarm operation experience to design and validate UAV coordinated localization for group of positioning distressed drones. In this regard, in this thesis, we present the end-to-end system design, proposed novel algorithms to solve the challenges in applying such a system, and evaluation results through experimentation and/or simulation

    Iot-enabled smart cities: evolution and outlook

    Get PDF
    For the last decade the Smart City concept has been under development, fostered by the growing urbanization of the world’s population and the need to handle the challenges that such a scenario raises. During this time many Smart City projects have been executed–some as proof-of-concept, but a growing number resulting in permanent, production-level deployments, improving the operation of the city and the quality of life of its citizens. Thus, Smart Cities are still a highly relevant paradigm which needs further development before it reaches its full potential and provides robust and resilient solutions. In this paper, the focus is set on the Internet of Things (IoT) as an enabling technology for the Smart City. In this sense, the paper reviews the current landscape of IoT-enabled Smart Cities, surveying relevant experiences and city initiatives that have embedded IoT within their city services and how they have generated an impact. The paper discusses the key technologies that have been developed and how they are contributing to the realization of the Smart City. Moreover, it presents some challenges that remain open ahead of us and which are the initiatives and technologies that are under development to tackle them.This research was partially funded by Spain State Research Agency (AEI) by means of the project FIERCE: Future Internet Enabled Resilient CitiEs (RTI2018-093475-A-I00). Prof. Song was supported by Smart City R&D project of the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (MOLIT), Ministry of Science and ICT (MSIT) (Grant 18NSPS-B149386-01)

    State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication and Visible Light Communication in the Development of Smart Cities

    Get PDF
    The current social impact of new technologies has produced major changes in all areas of society, creating the concept of a smart city supported by an electronic infrastructure, telecommunications and information technology. This paper presents a review of Bluetooth Low Energy (BLE), Near Field Communication (NFC) and Visible Light Communication (VLC) and their use and influence within different areas of the development of the smart city. The document also presents a review of Big Data Solutions for the management of information and the extraction of knowledge in an environment where things are connected by an “Internet of Things” (IoT) network. Lastly, we present how these technologies can be combined together to benefit the development of the smart city

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    Distributed mobile platforms and applications for intelligent transportation systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 70-75).Smartphones are pervasive, and possess powerful processors, multi-faceted sensing, and multiple radios. However, networked mobile apps still typically use a client-server programming model, sending all shared data queries and uploads through the cellular network, incurring bandwidth consumption and unpredictable latencies. Leveraging the local compute power and device-to-device communications of modern smartphones can mitigate demand on cellular networks and improve response times. This thesis presents two systems towards this vision. First, we present DIPLOMA, which aids developers in achieving this vision by providing a programming layer to easily program a collection of smartphones connected over adhoc wireless. It presents a familiar shared data model to developers, while underneath, it implements a distributed shared memory system that provides coherent relaxed-consistency access to data across different smartphones and addresses the issues that device mobility and unreliable networking pose against consistency and coherence. We evaluated our prototype on 10 Android phones on both 3G (HSPA) and 4G (LTE) networks with a representative location-based photo-sharing service and a synthetic benchmark. We also simulated large scale scenarios up to 160 nodes on the ns-2 network simulator. Compared to a client-server baseline, our system shows response time improvements of 10x over 3G and 2x over 4G. We also observe cellular bandwidth reductions of 96%, comparable energy consumption, and a 95.3% request completion rate with coherent caching. With RoadRunner, we apply our vision to Intelligent Transportation Systems (ITS). RoadRunner implements vehicular congestion control as an in-vehicle smartphone app that judiciously harnesses onboard sensing, local computation, and short-range communications, enabling large-scale traffic congestion control without the need for physical infrastructure, at higher penetration across road networks, and at finer granularity. RoadRunner enforces a quota on the number of cars on a road by requiring vehicles to possess a token for entry. Tokens are circulated and reused among multiple vehicles as they move between regions. We implemented RoadRunner as an Android application, deployed it on 10 vehicles using 4G (LTE), 802.11p DSRC and 802.11n adhoc WiFi, and measured cellular access reductions up to 84%, response time improvements up to 80%, and effectiveness of the system in enforcing congestion control policies. We also simulated large-scale scenarios using actual traffic loop-detector counts from Singapore.by Jason Hao Gao.S.M

    A Framework for Quality of Service in Vehicle-to-Pedestrian Safety Communication

    Get PDF
    Vehicle-to-Everything (V2X) communication has emerged as an important mechanism to improve the safety and efficiency of road traffic. V2X communication encompasses Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P) communication. Among these types, the V2P communication efforts continue to be in the preliminary stage and lack a rounded approach towards the development of V2P systems. V2P involves communication between vehicles and a wide variety of Vulnerable Road Users (VRUs), such as pedestrians, bicyclists, mopeds, etc. The V2X systems were originally developed only for V2V and V2I when solely the vehicle characteristics were in focus. However, effective V2P system design needs to consider the characteristics of VRUs. The differing characteristics of VRUs have given rise to many questions while adapting to the V2V communication model for the V2P system. This dissertation addresses three aspects pertaining to the development of the V2P safety system. The first aspect involves a systematic design of a V2P system using a holistic approach. This dissertation proposes a V2P design framework based on various categories of inputs that are required for the design of an effective V2P system. This framework improves the understanding of the V2P system requirements and helps make the design process more systematic. The second aspect is the network performance of the V2X network in the presence of a large number of VRUs. This dissertation proposes MC-COCO4V2P, which is an energy-efficient pedestrian clustering mechanism for network congestion mitigation. MC-COCO4V2P improves network performance by reducing the pedestrian-generated safety messages. It also improves the battery life of the pedestrian devices in the process. The third aspect involves the reliability of communication between a pair of a vehicle and a pedestrian that are on the verge of collision. This dissertation classifies such crucial communication as the one requiring the highest priority even among the exchange of critical safety messages. It proposes a mechanism enabling the surrounding nodes to reduce the communication priority temporarily. This results in preferred medium access for the pair resulting in higher Quality-of-Service (QoS) for the crucial communication.Die Kommunikation zwischen Verkehrsteilnehmern (V2X) hat sich zu einem wichtigen Mechanismus zur Verbesserung der Sicherheit und Effizienz des Straßenverkehrs entwickelt. Obwohl die V2X-Kommunikation prinzipiell die Kommunikation zwischen Fahrzeugen (V2V), zwischen Fahrzeug und Infrastruktur (V2I) sowie zwischen Fahrzeug und FußgĂ€nger (V2P) umfasst, sind AnsĂ€tze zur V2P-Kommunikation weiterhin in einem sehr frĂŒhen Stadium und lassen einen umfassenden Ansatz fĂŒr die Entwicklung von V2P-Systemen vermissen. V2P umfasst im Detail die Kommunikation zwischen Fahrzeugen und einer Vielzahl von gefĂ€hrdeten Verkehrsteilnehmern (VRUs), wie beispielsweise FußgĂ€nger, Radfahrer oder Mopeds. V2X-Systeme wurden ursprĂŒnglich nur fĂŒr V2V- und V2I-Kommunikation entwickelt, wobei ausschließlich die Fahrzeugeigenschaften im Fokus standen. Ein effektives V2P-Systemdesign muss jedoch auch die Eigenschaften von VRUs berĂŒcksichtigen, die bei der BerĂŒcksichtigung der V2P-Kommunikation in einem V2X-System viele Fragen aufwerfen. Diese Dissertation befasst sich mit drei Aspekten im Zusammenhang mit der Entwicklung eines V2P-Systems. Der erste Aspekt betrifft die systematische Konzeption eines V2P-Systems nach einem ganzheitlichen Ansatz. Diese Dissertation schlĂ€gt einen V2P-Entwurfsrahmen vor, der auf verschiedenen EingangsgrĂ¶ĂŸen basiert, die fĂŒr die Entwicklung eines effektiven V2P-Systems erforderlich sind. Dieser Entwurfsrahmen verbessert das VerstĂ€ndnis der V2P-Systemanforderungen und trĂ€gt dazu bei, den Entwurfsprozess systematischer zu gestalten. Der zweite Aspekt betrifft die Leistung des V2X-Netzes, wenn eine große Anzahl von VRUs prĂ€sent ist. Diese Dissertation schlĂ€gt hierfĂŒr MC-COCO4V2P vor, einen energieeffizienten Clustering-Mechanismus fĂŒr FußgĂ€nger zur EindĂ€mmung der NetzĂŒberlastung. MC-COCO4V2P verbessert die Netzleistung, indem die Anzahl der von FußgĂ€ngern generierten Sicherheitsmeldungen reduziert wird. Damit wird zudem die Batterielebensdauer der von den FußgĂ€ngern genutzten GerĂ€te verbessert. Der dritte Aspekt betrifft die ZuverlĂ€ssigkeit der Kommunikation zwischen einem Fahrzeug und einem FußgĂ€nger, die kurz vor einem Zusammenstoß stehen. Diese Dissertation stuft eine so wichtige Kommunikation als diejenige ein, die selbst beim Austausch anderer kritischer Sicherheitsnachrichten die höchste PrioritĂ€t bekommt. Es wird ein Mechanismus vorgeschlagen, der es den umgebenden Verkehrsteilnehmern ermöglicht, ihre KommunikationsprioritĂ€t vorĂŒbergehend zu verringern. Dies fĂŒhrt zu einem bevorzugten Medienzugriff fĂŒr die durch eine Kollision gefĂ€hrdeten Verkehrsteilnehmer, was zu einer höheren DienstgĂŒte (QoS) fĂŒr deren Kommunikation fĂŒhrt.Pedestrians and bicyclists, also known as Vulnerable Road Users (VRUs), are one of the weakest components of Intelligent Transportation Systems from a safety perspective. However, with the advent of new communication technologies, VRU protection may no longer be dependent solely on the vehicle’s safety systems. VRUs may share their location information with the surrounding vehicles to increase awareness of their presence. Such communication among vehicles and VRUs is referred to as Vehicle-to-Pedestrian (V2P) communication. Although the V2P system may be built upon the existing Vehicle-to-Vehicle communication system, it has its own set of challenges, such as different VRU mobility characteristics, energy-constrained devices, and VRU density. Therefore, there needs to be a V2P system model which is adapted to the VRU characteristics. This dissertation tackles this challenge by proposing a framework that enables scalability, reliability, and energy efficiency for VRU communication
    • 

    corecore