96 research outputs found

    Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction

    Get PDF
    6G – sixth generation – is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning (ML) algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous cars, and many more. Those algorithms have also been used in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of ML techniques, especially deep learning (DL), it is critical to consider the security concern when applying the algorithms. While ML algorithms offer significant advantages for 6G networks, security concerns on artificial intelligence (AI) models are typically ignored by the scientific community so far. However, security is also a vital part of AI algorithms because attackers can poison the AI model itself. This paper proposes a mitigation method for adversarial attacks against proposed 6G ML models for the millimeter-wave (mmWave) beam prediction using adversarial training. The main idea behind generating adversarial attacks against ML models is to produce faulty results by manipulating trained DL models for 6G applications for mmWave beam prediction. We also present a proposed adversarial learning mitigation method’s performance for 6G security in mmWave beam prediction application a fast gradient sign method attack. The results show that the defended model under attack’s mean square errors (i.e., the prediction accuracy) are very close to the undefended model without attack

    LiDAR aided simulation pipeline for wireless communication in vehicular traffic scenarios

    Get PDF
    Abstract. Integrated Sensing and Communication (ISAC) is a modern technology under development for Sixth Generation (6G) systems. This thesis focuses on creating a simulation pipeline for dynamic vehicular traffic scenarios and a novel approach to reducing wireless communication overhead with a Light Detection and Ranging (LiDAR) based system. The simulation pipeline can be used to generate data sets for numerous problems. Additionally, the developed error model for vehicle detection algorithms can be used to identify LiDAR performance with respect to different parameters like LiDAR height, range, and laser point density. LiDAR behavior on traffic environment is provided as part of the results in this study. A periodic beam index map is developed by capturing antenna azimuth and elevation angles, which denote maximum Reference Signal Receive Power (RSRP) for a simulated receiver grid on the road and classifying areas using Support Vector Machine (SVM) algorithm to reduce the number of Synchronization Signal Blocks (SSBs) that are needed to be sent in Vehicle to Infrastructure (V2I) communication. This approach effectively reduces the wireless communication overhead in V2I communication
    • …
    corecore