113 research outputs found

    Privacy protection in location based services

    Get PDF
    This thesis takes a multidisciplinary approach to understanding the characteristics of Location Based Services (LBS) and the protection of location information in these transactions. This thesis reviews the state of the art and theoretical approaches in Regulations, Geographic Information Science, and Computer Science. Motivated by the importance of location privacy in the current age of mobile devices, this thesis argues that failure to ensure privacy protection under this context is a violation to human rights and poses a detriment to the freedom of users as individuals. Since location information has unique characteristics, existing methods for protecting other type of information are not suitable for geographical transactions. This thesis demonstrates methods that safeguard location information in location based services and that enable geospatial analysis. Through a taxonomy, the characteristics of LBS and privacy techniques are examined and contrasted. Moreover, mechanisms for privacy protection in LBS are presented and the resulting data is tested with different geospatial analysis tools to verify the possibility of conducting these analyses even with protected location information. By discussing the results and conclusions of these studies, this thesis provides an agenda for the understanding of obfuscated geospatial data usability and the feasibility to implement the proposed mechanisms in privacy concerning LBS, as well as for releasing crowdsourced geographic information to third-parties

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS

    Simulating The Impact of Emissions Control on Economic Productivity Using Particle Systems and Puff Dispersion Model

    Get PDF
    A simulation platform is developed for quantifying the change in productivity of an economy under passive and active emission control mechanisms. The program uses object-oriented programming to code a collection of objects resembling typical stakeholders in an economy. These objects include firms, markets, transportation hubs, and boids which are distributed over a 2D surface. Firms are connected using a modified Prim’s Minimum spanning tree algorithm, followed by implementation of an all-pair shortest path Floyd Warshall algorithm for navigation purposes. Firms use a non-linear production function for transformation of land, labor, and capital inputs to finished product. A GA-Vehicle Routing Problem with multiple pickups and drop-offs is implemented for efficient delivery of commodities across multiple nodes in the economy. Boids are autonomous agents which perform several functions in the economy including labor, consumption, renting, saving, and investing. Each boid is programmed with several microeconomic functions including intertemporal choice models, Hicksian and Marshallian demand function, and labor-leisure model. The simulation uses a Puff Dispersion model to simulate the advection and diffusion of emissions from point and mobile sources in the economy. A dose-response function is implemented to quantify depreciation of a Boid’s health upon contact with these emissions. The impact of emissions control on productivity and air quality is examined through a series of passive and active emission control scenarios. Passive control examines the impact of various shutdown times on economic productivity and rate of emissions exposure experienced by boids. The active control strategy examines the effects of acceptable levels of emissions exposure on economic productivity. The key findings on 7 different scenarios of passive and active emissions controls indicate that rate of productivity and consumption in an economy declines with increased scrutiny of emissions from point sources. In terms of exposure rates, the point sources may not be the primary source of average exposure rates, however they significantly impact the maximum exposure rate experienced by a boid. Tightening of emissions control also negatively impacts the transportation sector by reducing the asset utilization rate as well as reducing the total volume of goods transported across the economy

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Multi-modal Spatial Crowdsourcing for Enriching Spatial Datasets

    Get PDF

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Energy storage design and integration in power systems by system-value optimization

    Get PDF
    Energy storage can play a crucial role in decarbonising power systems by balancing power and energy in time. Wider power system benefits that arise from these balancing technologies include lower grid expansion, renewable curtailment, and average electricity costs. However, with the proliferation of new energy storage technologies, it becomes increasingly difficult to identify which technologies are economically viable and how to design and integrate them effectively. Using large-scale energy system models in Europe, the dissertation shows that solely relying on Levelized Cost of Storage (LCOS) metrics for technology assessments can mislead and that traditional system-value methods raise important questions about how to assess multiple energy storage technologies. Further, the work introduces a new complementary system-value assessment method called the market-potential method, which provides a systematic deployment analysis for assessing multiple storage technologies under competition. However, integrating energy storage in system models can lead to the unintended storage cycling effect, which occurs in approximately two-thirds of models and significantly distorts results. The thesis finds that traditional approaches to deal with the issue, such as multi-stage optimization or mixed integer linear programming approaches, are either ineffective or computationally inefficient. A new approach is suggested that only requires appropriate model parameterization with variable costs while keeping the model convex to reduce the risk of misleading results. In addition, to enable energy storage assessments and energy system research around the world, the thesis extended the geographical scope of an existing European opensource model to global coverage. The new build energy system model ‘PyPSA-Earth’ is thereby demonstrated and validated in Africa. Using PyPSA-Earth, the thesis assesses for the first time the system value of 20 energy storage technologies across multiple scenarios in a representative future power system in Africa. The results offer insights into approaches for assessing multiple energy storage technologies under competition in large-scale energy system models. In particular, the dissertation addresses extreme cost uncertainty through a comprehensive scenario tree and finds that, apart from lithium and hydrogen, only seven energy storage are optimizationrelevant technologies. The work also discovers that a heterogeneous storage design can increase power system benefits and that some energy storage are more important than others. Finally, in contrast to traditional methods that only consider single energy storage, the thesis finds that optimizing multiple energy storage options tends to significantly reduce total system costs by up to 29%. The presented research findings have the potential to inform decision-making processes for the sizing, integration, and deployment of energy storage systems in decarbonized power systems, contributing to a paradigm shift in scientific methodology and advancing efforts towards a sustainable future
    • 

    corecore