62 research outputs found

    KRATOS: An Open Source Hardware-Software Platform for Rapid Research in LPWANs

    Full text link
    Long-range (LoRa) radio technologies have recently gained momentum in the IoT landscape, allowing low-power communications over distances up to several kilometers. As a result, more and more LoRa networks are being deployed. However, commercially available LoRa devices are expensive and propriety, creating a barrier to entry and possibly slowing down developments and deployments of novel applications. Using open-source hardware and software platforms would allow more developers to test and build intelligent devices resulting in a better overall development ecosystem, lower barriers to entry, and rapid growth in the number of IoT applications. Toward this goal, this paper presents the design, implementation, and evaluation of KRATOS, a low-cost LoRa platform running ContikiOS. Both, our hardware and software designs are released as an open- source to the research community.Comment: Accepted at WiMob 201

    Synchronous and Concurrent Transmissions for Consensus in Low-Power Wireless

    Get PDF
    With the emergence of the Internet of Things, autonomous vehicles and the Industry 4.0, the need for dependable yet adaptive network protocols is arising. Many of these applications build their operations on distributed consensus. For example, UAVs agree on maneuvers to execute, and industrial systems agree on set-points for actuators.Moreover, such scenarios imply a dynamic network topology due to mobility and interference, for example. Many applications are mission- and safety-critical, too.Failures could cost lives or precipitate economic losses.In this thesis, we design, implement and evaluate network protocols as a step towards enabling a low-power, adaptive and dependable ubiquitous networking that enables consensus in the Internet of Things. We make four main contributions:- We introduce Orchestra that addresses the challenge of bringing TSCH (Time Slotted Channel Hopping) to dynamic networks as envisioned in the Internet of Things. In Orchestra, nodes autonomously compute their local schedules and update automatically as the topology evolves without signaling overhead. Besides, it does not require a central or distributed scheduler. Instead, it relies on the existing network stack information to maintain the schedules.- We present A2 : Agreement in the Air, a system that brings distributed consensus to low-power multihop networks. A2 introduces Synchrotron, a synchronous transmissions kernel that builds a robust mesh by exploiting the capture effect, frequency hopping with parallel channels, and link-layer security. A2 builds on top of this layer and enables the two- and three-phase commit protocols, and services such as group membership, hopping sequence distribution, and re-keying.- We present Wireless Paxos, a fault-tolerant, network-wide consensus primitive for low-power wireless networks. It is a new variant of Paxos, a widely used consensus protocol, and is specifically designed to tackle the challenges of low-power wireless networks. By utilizing concurrent transmissions, it provides a dependable low-latency consensus.- We present BlueFlood, a protocol that adapts concurrent transmissions to Bluetooth. The result is fast and efficient data dissemination in multihop Bluetooth networks. Moreover, BlueFlood floods can be reliably received by off-the-shelf Bluetooth devices such as smartphones, opening new applications of concurrent transmissions and seamless integration with existing technologies

    Implementation of a LoRa Mesh library

    Get PDF
    LoRa is a popular communication technology in the Internet of Things (IoT) domain, providing low-power and long-range communications. Most LoRa IoT applications use the LoRaWAN architecture, which builds a star topology between LoRa end nodes and the gateway they connect to. However, LoRa can also be used for the communication between end nodes themselves, forming a mesh network topology. In this paper, we present a library that allows to integrate LoRa end nodes into a LoRa mesh network, in which a routing protocol is used. Thus, an IoT application running on these nodes can use the library to send and receive data packets to and from other nodes in the LoRa mesh network. The designed routing protocol is proactive, and maintains the routing table at each node updated by sending routing messages between neighboring nodes. The implemented library has been tested on embedded boards featuring an ESP32 microcontroller and a LoRa single-channel radio. By using our LoRa mesh library, nodes do not need to connect to a LoRaWAN gateway, but among themselves. This opens the possibility for new, distributed applications solely built upon tiny IoT nodes.This work was supported by the Ministry of Science and Innovation of the Spanish Government through the State Research Agency (AEI) under Project PID2019-106774RB-C21, Project PCI2019-111851-2 (LeadingEdge CHIST-ERA), and Project PCI2019-111850-2 (DiPET CHIST-ERA).Peer ReviewedPostprint (published version

    TSCH for Long Range Low Data Rate Applications

    Get PDF

    The Contiki-NG open source operating system for next generation IoT devices

    Get PDF
    Contiki-NG (Next Generation) is an open source, cross-platform operating system for severely constrained wireless embedded devices. It focuses on dependable (reliable and secure) low-power communications and standardised protocols, such as 6LoWPAN, IPv6, 6TiSCH, RPL, and CoAP. Its primary aims are to (i) facilitate rapid prototyping and evaluation of Internet of Things research ideas, (ii) reduce time-to-market for Internet of Things applications, and (iii) provide an easy-to-use platform for teaching embedded systems-related courses in higher education. Contiki-NG started as a fork of the Contiki OS and retains many of its original features. In this paper, we discuss the motivation behind the creation of Contiki-NG, present the most recent version (v4.7), and highlight the impact of Contiki-NG through specific examples

    Multi-channel Distributed MAC protocol for WSN-based wildlife monitoring

    Get PDF
    International audienceSeveral wild animal species are endangered by poaching. As a solution, deploying wireless sensors on animals able to send regular messages and also alert messages has been envisaged recently by several authorities and foundations. In that context, this paper proposes WildMAC, a multichannel, multihop wireless communication protocol for these specific wireless sensor networks that have to collect data from unknown large areas with different QoS requirements. WildMAC is a TDMA based MAC protocol that leverages long range communication properties to propose an efficient data collection mean. Its performance evaluation shows it meets QoS requirements

    ์ด๊ธฐ์ข… IoT ๊ธฐ๊ธฐ๊ฐ„ ํ˜‘๋ ฅ์„ ํ†ตํ•œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๋ฐ•์„ธ์›….The Internet of Things (IoT) has become a daily life by pioneering applications in various fields. In this dissertation, we consider increasing transmission data rate with energy efficiency, extending transmission coverage with low power, and improving reliability in congested frequency bands as three challenges to expanding IoT applications. We address two issues to overcome these challenges. First, we design a layered network system with a new structure that combines Bluetooth Low Energy (BLE) and Wi-Fi networks in a multi-hop network. Based on the system, we propose methods to increase data rate with energy efficiency and extend transmission coverage in a low-power situation. We implement the proposed system in the Linux kernel and evaluate the performance through an indoor testbed. As a result, we confirmed that the proposed system supports high data traffic and reduces average power consumption in the testbed compared to the existing single BLE/Wi-Fi ad-hoc network in a multi-hop situation. Second, we tackle the adaptive frequency hopping (AFH) problem of BLE through cross-technology communication (CTC) and channel weighting. We design the AFH scheme that weights the channels used by BLE devices with improving reliability in the congested bands of both Wi-Fi and BLE devices. We evaluate the proposed scheme through prototype experiments and simulations, confirming that the proposed scheme increases the packet reception rate of BLE in the congested ISM band compared to the existing AFH algorithm.์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์€ ํ˜„์žฌ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ application์„ ๊ฐœ์ฒ™ํ•˜์—ฌ ์ƒํ™œํ™”๋˜์–ด ์™”๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์˜ ์‘์šฉ ์‚ฌ๋ก€ ํ™•์žฅ์„ ์œ„ํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ „์†ก ์†๋„ ํ–ฅ์ƒ, ์ €์ „๋ ฅ ์ƒํ™ฉ์—์„œ์˜ ์ „์†ก ๋ฒ”์œ„ ํ™•์žฅ, ํ˜ผ์žกํ•œ ๋Œ€์—ญ์—์„œ์˜ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ์„ ์ƒˆ๋กœ์šด ๋„์ „ ๊ณผ์ œ๋กœ ์‚ผ๊ณ , ์ด๋Ÿฌํ•œ ๋„์ „ ๊ณผ์ œ๋ฅผ ๊ทน๋ณตํ•  ๋‘ ๊ฐ€์ง€ ์ฃผ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ์งธ, ๋‹ค์ค‘ ํ™‰ ๋„คํŠธ์›Œํฌ ์ƒํ™ฉ์—์„œ์˜ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ๊ณผ Wi-Fi ๋„คํŠธ์›Œํฌ๋ฅผ ๊ฒฐํ•ฉ ํ•œ ์ƒˆ๋กœ์šด ๊ตฌ์กฐ์˜ ๊ณ„์ธต์  ๋„คํŠธ์›Œํฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ณ  ์ด์— ๊ธฐ๋ฐ˜ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ „์†ก ์†๋„ ํ–ฅ์ƒ ๋ฐ ์ €์ „๋ ฅ ์ƒํ™ฉ์—์„œ์˜ ์ „์†ก ๋ฒ”์œ„ํ™•์žฅ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์€ Linux ์ปค๋„์— ๊ตฌํ˜„ํ•˜์—ฌ ์‹ค๋‚ด ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ œ์•ˆ ํ•œ ๊ธฐ๋ฒ•์ด ๋‹ค์ค‘ ํ™‰ ์ƒํ™ฉ์—์„œ ๊ธฐ์กด ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ/Wi-Fi ๋‹จ์ผ ad-hoc ๋„คํŠธ์›Œํฌ์™€ ๋น„๊ตํ•˜์—ฌ ๋†’์€ ๋ฐ์ดํ„ฐ ํŠธ๋ž˜ํ”ฝ์„ ์ง€์›ํ•˜๋ฉฐ, ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ์˜ ํ‰๊ท  ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„ ์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค. ๋‘˜์งธ, Cross-technology Communication (CTC)๊ณผ ์ฑ„๋„ ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•œ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ์˜ Adaptive Frequency Hopping (AFH) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ ๊ธฐ๊ธฐ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ์ฑ„๋„์— ๊ฐ€์ค‘์น˜๋ฅผ ๋‘๋Š” AFH ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์—ฌ Wi-Fi ์™€ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ ๊ธฐ๊ธฐ๊ฐ€ ๋ชจ๋‘ ํ˜ผ์žกํ•œ ๋Œ€์—ญ์—์„œ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒํ•œ๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์‹คํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด์˜ AFH ๊ธฐ๋ฒ•๊ณผ ๋น„๊ตํ•˜์—ฌ ํ˜ผ์žกํ•œ ISM ๋Œ€์—ญ์—์„œ ๋ธ”๋ฃจํˆฌ์Šค ์ €์ „๋ ฅ์˜ ํŒจํ‚ท ์ˆ˜์‹ ์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Contributions and Outline 2 2 Wi-BLE: On Cooperative Operation of Wi-Fi and Bluetooth Low Energy under IPv6 4 2.1 Introduction 4 2.2 Related Work 7 2.2.1 Multihop Connectivity for Wi-Fi or BLE 7 2.2.2 Multi-radio Operation 11 2.3 System Overview 13 2.3.1 Control Plane 13 2.3.2 Data Plane 16 2.3.3 Overall Procedure 16 2.4 MABLE: AODV Routing over BLE 17 2.4.1 BLE Channel Utilization 17 2.4.2 Joint Establishment of Route and Connection 20 2.4.3 Link Quality Metric for BLE Data Channels 22 2.4.4 Bi-directional Route Error Propagation 25 2.5 Wi-BLE: Wi-Fi Ad-hoc over BLE 27 2.5.1 Radio Selection 27 2.5.2 Routing and Radio Wake-up for Wi-Fi 30 2.6 Evaluation 32 2.6.1 BLE Routing 33 2.6.2 Wi-Fi Routing over BLE 35 2.6.3 Radio Selection 38 2.7 Summary 40 3 WBC-AFH: Direct Wi-Fi to BLE Communication based AFH 41 3.1 Introduction 41 3.2 Background 45 3.2.1 Frequency hopping in BLE 45 3.2.2 Cross Technology Communication 47 3.3 Proposed AFH 49 3.3.1 CTC based informing 50 3.3.2 Weighted channel select 51 3.3.3 Hopping set size optimization 52 3.3.4 WBC-AFH 54 3.4 Evaluation 57 3.4.1 Setup 57 3.4.2 Robustness 60 3.4.3 Reliability 61 3.5 Future Work 65 3.6 Summary 66 4 Conclusion 67๋ฐ•
    • โ€ฆ
    corecore