96 research outputs found

    Obligations of trust for privacy and confidentiality in distributed transactions

    Get PDF
    Purpose – This paper aims to describe a bilateral symmetric approach to authorization, privacy protection and obligation enforcement in distributed transactions. The authors introduce the concept of the obligation of trust (OoT) protocol as a privacy assurance and authorization mechanism that is built upon the XACML standard. The OoT allows two communicating parties to dynamically exchange their privacy and authorization requirements and capabilities, which the authors term a notification of obligation (NoB), as well as their commitments to fulfilling each other's requirements, which the authors term signed acceptance of obligations (SAO). The authors seek to describe some applicability of these concepts and to show how they can be integrated into distributed authorization systems for stricter privacy and confidentiality control. Design/methodology/approach – Existing access control and privacy protection systems are typically unilateral and provider-centric, in that the enterprise service provider assigns the access rights, makes the access control decisions, and determines the privacy policy. There is no negotiation between the client and the service provider about which access control or privacy policy to use. The authors adopt a symmetric, more user-centric approach to privacy protection and authorization, which treats the client and service provider as peers, in which both can stipulate their requirements and capabilities, and hence negotiate terms which are equally acceptable to both parties. Findings – The authors demonstrate how the obligation of trust protocol can be used in a number of different scenarios to improve upon the mechanisms that are currently available today. Practical implications – This approach will serve to increase trust in distributed transactions since each communicating party receives a difficult to repudiate digitally signed acceptance of obligations, in a standard language (XACML), which can be automatically enforced by their respective computing machinery. Originality/value – The paper adds to current research in trust negotiation, privacy protection and authorization by combining all three together into one set of standardized protocols. Furthermore, by providing hard to repudiate signed acceptance of obligations messages, this strengthens the legal case of the injured party should a dispute arise

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u

    Assured information sharing for ad-hoc collaboration

    Get PDF
    Collaborative information sharing tends to be highly dynamic and often ad hoc among organizations. The dynamic natures and sharing patterns in ad-hoc collaboration impose a need for a comprehensive and flexible approach to reflecting and coping with the unique access control requirements associated with the environment. This dissertation outlines a Role-based Access Management for Ad-hoc Resource Shar- ing framework (RAMARS) to enable secure and selective information sharing in the het- erogeneous ad-hoc collaborative environment. Our framework incorporates a role-based approach to addressing originator control, delegation and dissemination control. A special trust-aware feature is incorporated to deal with dynamic user and trust management, and a novel resource modeling scheme is proposed to support fine-grained selective sharing of composite data. As a policy-driven approach, we formally specify the necessary pol- icy components in our framework and develop access control policies using standardized eXtensible Access Control Markup Language (XACML). The feasibility of our approach is evaluated in two emerging collaborative information sharing infrastructures: peer-to- peer networking (P2P) and Grid computing. As a potential application domain, RAMARS framework is further extended and adopted in secure healthcare services, with a unified patient-centric access control scheme being proposed to enable selective and authorized sharing of Electronic Health Records (EHRs), accommodating various privacy protection requirements at different levels of granularity

    EMI Security Architecture

    Get PDF
    This document describes the various architectures of the three middlewares that comprise the EMI software stack. It also outlines the common efforts in the security area that allow interoperability between these middlewares. The assessment of the EMI Security presented in this document was performed internally by members of the Security Area of the EMI project

    Privacy trust access control infrastructure using XACML

    Get PDF
    The use of personal, sensitive information, such as privileges and attributes, to gain access to computer resources in distributed environments raises an interesting paradox. On one hand, in order to make the services and resources accessible to legitimate users, access control infrastructure requires valid and provable service clients' identities or attributes to make decisions. On the other hand, the service clients may not be prepared to disclose their identity information or attributes to a remote party without determining in advance whether the service provider can be trusted with such sensitive information. Moreover, when clients give out personal information, they still are unsure of the extent of propagation and use of the information. This thesis describes an investigation of privacy preserving options in access control infrastructures, and proposes a security model to support the management of those options, based on extensible Access Control Markup Language (XACML) and Security Access Markup Language (SAML), both of which are OASIS security standards. Existing access control systems are typically unilateral in that the enterprise service provider assigns the access rights and makes the access control decisions, and there is no negotiation between the client and the service provider. As access control management systems lean towards being user-centric or federated, unilateral approaches can no longer adequately preserve the client's privacy, particularly where communicating parties have no pre-existing trust relationship. As a result, a unified approach that significantly improves privacy and confidentiality protection in distributed environments was considered. This resulted in the development of XACML Trust Management Authorization Infrastructure (XTMAI) designed to handle privacy and confidentiality mutually and simultaneously using the concept of Obligation of Trust (OoT) protocol. The OoT enables two or more transaction parties to exchange Notice of Obligations (NoB) (obligating constraints) as well as Signed Acceptance of Obligation (SAO), a proof of acceptance, as security assurances before exchange of sensitive resources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore