13,738 research outputs found

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Security and Privacy Problems in Voice Assistant Applications: A Survey

    Full text link
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain.Comment: 5 figure

    The Viability and Potential Consequences of IoT-Based Ransomware

    Get PDF
    With the increased threat of ransomware and the substantial growth of the Internet of Things (IoT) market, there is significant motivation for attackers to carry out IoT-based ransomware campaigns. In this thesis, the viability of such malware is tested. As part of this work, various techniques that could be used by ransomware developers to attack commercial IoT devices were explored. First, methods that attackers could use to communicate with the victim were examined, such that a ransom note was able to be reliably sent to a victim. Next, the viability of using "bricking" as a method of ransom was evaluated, such that devices could be remotely disabled unless the victim makes a payment to the attacker. Research was then performed to ascertain whether it was possible to remotely gain persistence on IoT devices, which would improve the efficacy of existing ransomware methods, and provide opportunities for more advanced ransomware to be created. Finally, after successfully identifying a number of persistence techniques, the viability of privacy-invasion based ransomware was analysed. For each assessed technique, proofs of concept were developed. A range of devices -- with various intended purposes, such as routers, cameras and phones -- were used to test the viability of these proofs of concept. To test communication hijacking, devices' "channels of communication" -- such as web services and embedded screens -- were identified, then hijacked to display custom ransom notes. During the analysis of bricking-based ransomware, a working proof of concept was created, which was then able to remotely brick five IoT devices. After analysing the storage design of an assortment of IoT devices, six different persistence techniques were identified, which were then successfully tested on four devices, such that malicious filesystem modifications would be retained after the device was rebooted. When researching privacy-invasion based ransomware, several methods were created to extract information from data sources that can be commonly found on IoT devices, such as nearby WiFi signals, images from cameras, or audio from microphones. These were successfully implemented in a test environment such that ransomable data could be extracted, processed, and stored for later use to blackmail the victim. Overall, IoT-based ransomware has not only been shown to be viable but also highly damaging to both IoT devices and their users. While the use of IoT-ransomware is still very uncommon "in the wild", the techniques demonstrated within this work highlight an urgent need to improve the security of IoT devices to avoid the risk of IoT-based ransomware causing havoc in our society. Finally, during the development of these proofs of concept, a number of potential countermeasures were identified, which can be used to limit the effectiveness of the attacking techniques discovered in this PhD research

    Fast Charging of Lithium-Ion Batteries Using Deep Bayesian Optimization with Recurrent Neural Network

    Full text link
    Fast charging has attracted increasing attention from the battery community for electrical vehicles (EVs) to alleviate range anxiety and reduce charging time for EVs. However, inappropriate charging strategies would cause severe degradation of batteries or even hazardous accidents. To optimize fast-charging strategies under various constraints, particularly safety limits, we propose a novel deep Bayesian optimization (BO) approach that utilizes Bayesian recurrent neural network (BRNN) as the surrogate model, given its capability in handling sequential data. In addition, a combined acquisition function of expected improvement (EI) and upper confidence bound (UCB) is developed to better balance the exploitation and exploration. The effectiveness of the proposed approach is demonstrated on the PETLION, a porous electrode theory-based battery simulator. Our method is also compared with the state-of-the-art BO methods that use Gaussian process (GP) and non-recurrent network as surrogate models. The results verify the superior performance of the proposed fast charging approaches, which mainly results from that: (i) the BRNN-based surrogate model provides a more precise prediction of battery lifetime than that based on GP or non-recurrent network; and (ii) the combined acquisition function outperforms traditional EI or UCB criteria in exploring the optimal charging protocol that maintains the longest battery lifetime

    RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

    Full text link
    Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%

    TOWARDS AN UNDERSTANDING OF EFFORTFUL FUNDRAISING EXPERIENCES: USING INTERPRETATIVE PHENOMENOLOGICAL ANALYSIS IN FUNDRAISING RESEARCH

    Get PDF
    Physical-activity oriented community fundraising has experienced an exponential growth in popularity over the past 15 years. The aim of this study was to explore the value of effortful fundraising experiences, from the point of view of participants, and explore the impact that these experiences have on people’s lives. This study used an IPA approach to interview 23 individuals, recognising the role of participants as proxy (nonprofessional) fundraisers for charitable organisations, and the unique organisation donor dynamic that this creates. It also bought together relevant psychological theory related to physical activity fundraising experiences (through a narrative literature review) and used primary interview data to substantiate these. Effortful fundraising experiences are examined in detail to understand their significance to participants, and how such experiences influence their connection with a charity or cause. This was done with an idiographic focus at first, before examining convergences and divergences across the sample. This study found that effortful fundraising experiences can have a profound positive impact upon community fundraisers in both the short and the long term. Additionally, it found that these experiences can be opportunities for charitable organisations to create lasting meaningful relationships with participants, and foster mutually beneficial lifetime relationships with them. Further research is needed to test specific psychological theory in this context, including self-esteem theory, self determination theory, and the martyrdom effect (among others)

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri
    • …
    corecore