47 research outputs found

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Control strategies for power distribution networks with electric vehicles integration.

    Get PDF

    Stigmergy-based Load Scheduling in a Demand Side Management Context

    Get PDF
    This work proposes an approach, based on a fundamental coordination mechanism from nature, namely stigmergy. The proposed meta-heuristic is utilized to distributively calculate global schedules for a population of customers provided with intelligent devices. These schedules maximize renewable energy sources utilization. Furthermore, this approach is adapted and utilized as a coordination mechanism of autonomous customers to modify their consumption behavior in a real-time optimization context

    Roadmap to Resilient Ultra-Low Energy Built Environment with Deep Integration of Renewables in 2050: Proceedings, Montreal Symposium

    Get PDF
    Conference proceedings of the Montreal Symposium "Roadmap to Resilient Ultra-Low Energy Built Environment with Deep Integration of Renewables in 2050", held online on October 16, 2020

    Electric vehicle integration in a real-time market

    Get PDF
    corecore