11,124 research outputs found

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Collaborative Ontology Engineering Methodologies for the Development of Decision Support Systems: Case Studies in the Healthcare Domain

    Get PDF
    New models and technological advances are driving the digital transformation of healthcare systems. Ontologies and Semantic Web have been recognized among the most valuable solutions to manage the massive, various, and complex healthcare data deriving from different sources, thus acting as backbones for ontology-based Decision Support Systems (DSSs). Several contributions in the literature propose Ontology engineering methodologies (OEMs) to assist the formalization and development of ontologies, by providing guidelines on tasks, activities, and stakeholders' participation. Nevertheless, existing OEMs differ widely according to their approach, and often lack of sufficient details to support ontology engineers. This paper performs a meta-review of the main criteria adopted for assessing OEMs, and major issues and shortcomings identified in existing methodologies. The key issues requiring specific attention (i.e., the delivery of a feasibility study, the introduction of project management processes, the support for reuse, and the involvement of stakeholders) are then explored into three use cases of semantic-based DSS in health-related fields. Results contribute to the literature on OEMs by providing insights on specific tools and approaches to be used when tackling these issues in the development of collaborative OEMs supporting DSS

    Semi-Automatic Systematic Literature Reviews and Information Extraction of COVID-19 Scientific Evidence: Description and Preliminary Results of the COKE Project

    Get PDF
    The COVID-19 pandemic highlighted the importance of validated and updated scientific information to help policy makers, healthcare professionals, and the public. The speed in disseminating reliable information and the subsequent guidelines and policy implementation are also essential to save as many lives as possible. Trustworthy guidelines should be based on a systematic evidence review which uses reproducible analytical methods to collect secondary data and analyse them. However, the guidelines’ drafting process is time consuming and requires a great deal of resources. This paper aims to highlight the importance of accelerating and streamlining the extraction and synthesis of scientific evidence, specifically within the systematic review process. To do so, this paper describes the COKE (COVID-19 Knowledge Extraction framework for next generation discovery science) Project, which involves the use of machine reading and deep learning to design and implement a semi-automated system that supports and enhances the systematic literature review and guideline drafting processes. Specifically, we propose a framework for aiding in the literature selection and navigation process that employs natural language processing and clustering techniques for selecting and organizing the literature for human consultation, according to PICO (Population/Problem, Intervention, Comparison, and Outcome) elements. We show some preliminary results of the automatic classification of sentences on a dataset of abstracts related to COVID-19

    A framework to maximise the communicative power of knowledge visualisations

    Get PDF
    Knowledge visualisation, in the field of information systems, is both a process and a product, informed by the closely aligned fields of information visualisation and knowledg management. Knowledge visualisation has untapped potential within the purview of knowledge communication. Even so, knowledge visualisations are infrequently deployed due to a lack of evidence-based guidance. To improve this situation, we carried out a systematic literature review to derive a number of “lenses” that can be used to reveal the essential perspectives to feed into the visualisation production process.We propose a conceptual framework which incorporates these lenses to guide producers of knowledge visualisations. This framework uses the different lenses to reveal critical perspectives that need to be considered during the design process. We conclude by demonstrating how this framework could be used to produce an effective knowledge visualisation

    Multimodal Wearable Intelligence for Dementia Care in Healthcare 4.0: A Survey

    Get PDF
    As a new revolution of Ubiquitous Computing and Internet of Things, multimodal wearable intelligence technique is rapidly becoming a new research topic in both academic and industrial fields. Owning to the rapid spread of wearable and mobile devices, this technique is evolving healthcare from traditional hub-based systems to more personalised healthcare systems. This trend is well-aligned with recent Healthcare 4.0 which is a continuous process of transforming the entire healthcare value chain to be preventive, precise, predictive and personalised, with significant benefits to elder care. But empowering the utility of multimodal wearable intelligence technique for elderly care like people with dementia is significantly challenging considering many issues, such as shortage of cost-effective wearable sensors, heterogeneity of wearable devices connected, high demand for interoperability, etc. Focusing on these challenges, this paper gives a systematic review of advanced multimodal wearable intelligence technologies for dementia care in Healthcare 4.0. One framework is proposed for reviewing the current research of wearable intelligence, and key enabling technologies, major applications, and successful case studies in dementia care, and finally points out future research trends and challenges in Healthcare 4.0

    Emerging Insights of Health Informatics Research: A Literature Analysis for Outlining New Themes

    Get PDF
    This paper presents a contemporary literature review to provide insights into the current health informatics literature. The objective of this study is to identify emerging directions of current health informatics research from the latest and existing studies in the health informatics domain. We analyse existing health informatics studies using a thematic analysis, so that justified sets of research agenda can be outlined on the basis of these findings. We selected articles that are published in the Science Direct online database. The selected 73 sample articles (published from 2014 to 2018 in premier health informatics journals) are considered as representative samples of health informatics studies. The analysis revealed ten topic areas and themes that would be of paramount importance for researchers and practitioners to follow. The findings provide an important foundational understanding for new health informatics studies
    corecore