274 research outputs found

    Interoperability in IoT

    Full text link
    Interoperability refers to the ability of IoT systems and components to communicate and share information among them. This crucial feature is key to unlock all of the IoT paradigm´s potential, including immense technological, economic, and social benefits. Interoperability is currently a major challenge in IoT, mainly due to the lack of a reference standard and the vast heterogeneity of IoT systems. IoT interoperability has also a significant importance in big data analytics because it substantively eases data processing. This chapter analyzes the critical importance of IoT interoperability, its different types, challenges to face, diverse use cases, and prospective interoperability solutions. Given that it is a complex concept that involves multiple aspects and elements of IoT, for a deeper insight, interoperability is studied across different levels of IoT systems. Furthermore, interoperability is also re-examined from a global approach among platforms and systems.González-Usach, R.; Yacchirema-Vargas, DC.; Julián-Seguí, M.; Palau Salvador, CE. (2019). Interoperability in IoT. Handbook of Research on Big Data and the IoT. 149-173. http://hdl.handle.net/10251/150250S14917

    Middleware Support for Generic Actuation in the Internet of Mobile Things

    Get PDF
    As the Internet of Things is expanding towards applications in almost any sector of our economy and daily life, so is the demand of employing and integrating devices with actuation capabilities, such as smart bulbs, HVAC,smart locks, industrial machines, robots or drones. Many middleware platforms have been developed in orderto support the development of distributed IoT applications and facilitate the sensors-to-cloud communication andedge processing capabilities, but surprisingly very little has been done to provide middleware-level, support andgeneric mechanisms for discovering the devices and their interfaces, and executing the actuation commands, i.e.transferring them to the device. In this paper, we present a generic support for actuation as an extension ofContextNet, our mobile-cloud middleware for IoMT. We describe the design of the distributed actuation supportand present a proof of working implementation that enables remote control of a Sphero mobile BB-8 toy

    Bridging IoT infrastructure and cloud application using cellular-based internet gateway device

    Get PDF
    An Internet of Things (IoT) middleware can solve interoperability problem among “things” in IoT infrastructure by collecting data. However, the sensor nodes’ data that is collected by the middleware cannot be directly delivered to cloud applications since the sensor nodes and the middleware are located in intranet. A solution to this problem is an Internet Gateway Device (IGD) that retrieves data from the middleware in intranet then forwards them to cloud applications in the internet. In this study, an IGD based on cellular network is proposed to provide wide-coverage internet connectivity. Two test scenarios were conducted to measure delay and throughput between the IGD and the cloud application; using data from DHT22 sensor and image sensor respectively. The results of the first test scenario using DHT22 sensor show that the average delay is under 5 seconds and the maximum throughput is 120 bps, while the second one using image sensor concludes that the average delay is 595 seconds and the maximum throughput is 909 bps

    Harnessing XMPP for Machine-to-Machine Communications & Pervasive Applications

    Get PDF
    An ever increasing number of interconnected embedded devices, or Machine-to-Machine (M2M) systems, are changing the way we live, work and play. M2M systems as a whole are typically characterized by the diversity in both the type of device and type of network access technology employed, and such systems are often still today task-specific and built for just one specific application. Smart lighting, remote monitoring and control of all kinds of consumer devices and industrial equipment, safety and security monitoring devices and smart health and fitness products, exemplify this revolution of intercommunicating machines. However, the differences in communication technologies and data formats among such devices and systems are leading to a huge complexity explosion problem and a strongly fragmented market, with no true interoperability. Due to these problems, the full potential of M2M technology has yet to be fulfilled. In this paper, we examine the suitability of the Extensible Messaging and Presence Protocol (XMPP) and experiment with its potential to rise to the challenge of machine-to-machine communications and meet the needs of modern pervasive applications. Experimental implementations and some proof-of-concept solutions are also presented

    Breaking vendors and city locks through a semantic-enabled global interoperable Internet-of-Things system: a smart parking case

    Get PDF
    The Internet of Things (IoT) is unanimously identified as one of the main technology enablers for the development of future intelligent environments. However, the current IoT landscape is suffering from large fragmentation with many platforms and vendors competing with their own solution. This fragmented scenario is now jeopardizing the uptake of the IoT, as investments are not carried out partly because of the fear of being captured in lock-in situations. To overcome these fears, interoperability solutions are being put forward in order to guarantee that the deployed IoT infrastructure, independently of its manufacturer and/or platform, can exchange information, data and knowledge in a meaningful way. This paper presents a Global IoT Services (GIoTS) use case demonstrating how semantic interoperability among five different smart city IoT deployments can be leveraged to develop a smart urban mobility service. The application that has been developed seamlessly consumes data from them for providing parking guidance and mobility suggestions at the five locations (Santander and Barcelona in Spain and Busan, Seoul and Seongnam in South Korea) where the abovementioned IoT deployments are installed. The paper is also presenting the key aspects of the system enabling the interoperability among the three underlying heterogeneous IoT platforms.This research was funded by European Union’s H2020 Programme for research, technological development and demonstration within the projects “Worldwide Interoperability for Semantics IoT (WISE-IoT)” (under grant agreement No 723156) and “Bridging the Interoperability Gap of the Internet of Things (BIG-IoT)” (under grant agreement No. 688038) and, in part, by the Spanish Government by means of the Project ADVICE “Dynamic Provisioning of Connectivity in High Density 5G Wireless Scenarios” under Grant TEC2015-71329-C2-1-R

    Case studies for a new IoT programming paradigm: Fluidware

    Get PDF
    A number of scientific and technological advancements enabled turning the Internet of Things vision into reality. However, there is still a bottleneck in designing and developing IoT applications and services: each device has to be programmed individually, and services are deployed to specific devices. The Fluidware approach advocates that to truly scale and raise the level of abstraction a novel perspective is needed, focussing on device ensembles and dynamic allocation of resources. In this paper, we motivate the need for such a paradigm shift through three case studies emphasising a mismatch between state of art solutions and desired properties to achieve

    AAL open source system for the monitoring and intelligent control of nursing homes

    Full text link
    [EN] SAFE-ECH is an innovative intelligent AAL open source system for monitoring nursing homes, that creates an Ambient Intelligent environment in a residence by collecting and storing sensor monitoring data, performing intelligent data analysis and specific actions to enhance the safety, comfort and efficient care of aged people. Our system implements open standards of the Open Geospatial Consortium complying with Observations & Measurements Schema (O&M), SensorML and Sensor Web Enablement (SWE) specifications. Our system adapts to the specific needs of each nursing home, integrating the required sensors, actuators, rules and services. It is scalable and allows the management of several residences simultaneously.This research was partially funded by the European Union's Horizon 2020 research and innovation programme as part of the INTERIoT project under Grant Agreement 687283, and by SAFE-ECH funded by the Spanish Ministerio de Industria, Economía y Competitividad (MINECO) under Grant Agreement RTC-2015-4502-1González-Usach, R.; Collado, V.; Esteve Domingo, M.; Palau Salvador, CE. (2017). AAL open source system for the monitoring and intelligent control of nursing homes. IEEE Systems, Man, and Cybernetics Society. 1-6. https://doi.org/10.1109/ICNSC.2017.8000072S1

    From Internet of Things to Internet of Data Apps

    Full text link
    We introduce the Internet of Data Apps (IoDA), representing the next natural progression of the Internet, Big Data, AI, and the Internet of Things. Despite advancements in these fields, the full potential of universal data access - the capability to seamlessly consume and contribute data via data applications - remains stifled by organizational and technological silos. To address these constraints, we propose the designs of an IoDA layer borrowing inspirations from the standard Internet protocols. This layer facilitates the interconnection of data applications across different devices and domains. This short paper serves as an invitation to dialogue over this proposal.Comment: 5 pages, 2 figure
    • …
    corecore