122 research outputs found

    Information Resources Management Long Range Plan, FY 1995-1999

    Get PDF
    Table of Contents: Introduction; Agency 5-Year IRM Investment Projections; Major IRM Program Accomplishments for FY 1993; Information Collection Budget; Summary of Computer Security Plans; Appendix: Acronym List

    HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction

    Get PDF
    Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface

    NASA Information Resources Management Long Range Plan, FY 1994-1998

    Get PDF
    Table of Contents: Introduction; Agency 5-Year IRM Investment Projections; Program Specific IRM Activities by Program Office; Major IRM Program Accomplishments for FY 1992; Information Collection Budget; Summary of Computer Security Plans; and Appendix: Acronym List

    Space station advanced automation

    Get PDF
    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software

    Speeding up Energy System Models - a Best Practice Guide

    Get PDF
    Background Energy system models (ESM) are widely used in research and industry to analyze todays and future energy systems and potential pathways for the European energy transition. Current studies address future policy design, analysis of technology pathways and of future energy systems. To address these questions and support the transformation of today’s energy systems, ESM have to increase in complexity to provide valuable quantitative insights for policy makers and industry. Especially when dealing with uncertainty and in integrating large shares of renewable energies, ESM require a detailed implementation of the underlying electricity system. The increased complexity of the models makes the application of ESM more and more difficult, as the models are limited by the available computational power of today’s decentralized workstations. Severe simplifications of the models are common strategies to solve problems in a reasonable amount of time – naturally significantly influencing the validity of results and reliability of the models in general. Solutions for Energy-System Modelling Within BEAM-ME a consortium of researchers from different research fields (system analysis, mathematics, operations research and informatics) develop new strategies to increase the computational performance of energy system models and to transform energy system models for usage on high performance computing clusters. Within the project, an ESM will be applied on two of Germany’s fastest supercomputers. To further demonstrate the general application of named techniques on ESM, a model experiment is implemented as part of the project. Within this experiment up to six energy system models will jointly develop, implement and benchmark speed-up methods. Finally, continually collecting all experiences from the project and the experiment, identified efficient strategies will be documented and general standards for increasing computational performance and for applying ESM to high performance computing will be documented in a best-practice guide

    RIACS

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: (1) Automated Reasoning. (2) Human-Centered Computing. and (3) High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling

    Design and Principles Enabling the Space Reference FOM

    Get PDF
    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability

    Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    Get PDF
    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles
    • …
    corecore