111,960 research outputs found

    The UCSC Genome Browser Database: update 2006

    Get PDF
    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, mRNA and expressed sequence tag evidence, comparative genomics, regulation, expression and variation data. The database is optimized to support fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. The Genome Browser displays a wide variety of annotations at all scales from single nucleotide level up to a full chromosome. The Table Browser provides direct access to the database tables and sequence data, enabling complex queries on genome-wide datasets. The Proteome Browser graphically displays protein properties. The Gene Sorter allows filtering and comparison of genes by several metrics including expression data and several gene properties. BLAT and In Silico PCR search for sequences in entire genomes in seconds. These tools are highly integrated and provide many hyperlinks to other databases and websites. The GBD, browsing tools, downloadable data files and links to documentation and other information can be found at

    Towards a Holistic Integration of Spreadsheets with Databases: A Scalable Storage Engine for Presentational Data Management

    Full text link
    Spreadsheet software is the tool of choice for interactive ad-hoc data management, with adoption by billions of users. However, spreadsheets are not scalable, unlike database systems. On the other hand, database systems, while highly scalable, do not support interactivity as a first-class primitive. We are developing DataSpread, to holistically integrate spreadsheets as a front-end interface with databases as a back-end datastore, providing scalability to spreadsheets, and interactivity to databases, an integration we term presentational data management (PDM). In this paper, we make a first step towards this vision: developing a storage engine for PDM, studying how to flexibly represent spreadsheet data within a database and how to support and maintain access by position. We first conduct an extensive survey of spreadsheet use to motivate our functional requirements for a storage engine for PDM. We develop a natural set of mechanisms for flexibly representing spreadsheet data and demonstrate that identifying the optimal representation is NP-Hard; however, we develop an efficient approach to identify the optimal representation from an important and intuitive subclass of representations. We extend our mechanisms with positional access mechanisms that don't suffer from cascading update issues, leading to constant time access and modification performance. We evaluate these representations on a workload of typical spreadsheets and spreadsheet operations, providing up to 20% reduction in storage, and up to 50% reduction in formula evaluation time

    The AliEn system, status and perspectives

    Full text link
    AliEn is a production environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse HEP data in a distributed way. The system is built around Open Source components, uses the Web Services model and standard network protocols to implement the computing platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. The aim of this paper is to present the current AliEn architecture and outline its future developments in the light of emerging standards.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, Word, 10 figures. PSN MOAT00

    An illustrated framework for the analysis of Web2.0 interactivity

    Get PDF

    Supporting novel home network management interfaces with Openflow and NOX

    Get PDF
    The Homework project has examined redesign of existing home network infrastructures to better support the needs and requirements of actual home users. Integrating results from several ethnographic studies, we have designed and built a home networking platform providing detailed per-flow measurement and management capabilities supporting several novel management interfaces. This demo specifically shows these new visualization and control interfaces, and describes the broader benefits of taking an integrated view of the networking infrastructure, realised through our router's augmented measurement and control APIs. Aspects of this work have been published: the Homework Database in Internet Management (IM) 2011 and implications of the ethnographic results are to appear at the SIGCOMM W-MUST workshop 2011. Separate, more detailed expositions of the interface elements and system performance and implications are currently under submission at other venues. A partial code release is already available and we anticipate fuller public beta release by Q4 2011

    Reconfigurable phased microstrip antenna array with defected ground structure and defected microstrip structure for beam steering application

    Get PDF
    Beam steering is defined as the ability to electronically steer the beam maximum of an antenna electric field pattern to some predefined point in space. The performance of a phased antenna array for beam steering without moving the antennas is important to military and civil applications. A steerable antenna with tunable phase shifter continues to be a popular choice to provide such systems. However, this additional device makes the structure more complicated, bulky and it represent a great part of the production cost of a phased array antenna. Therefore, it creates new challenges to find an alternative approach. This work proposed two alternative approaches to steer the main beam. The first is based on a defected ground structure (DGS), while the second is a defected microstrip structure (DMS), which due to their slow wave effect and band-stop property, are able to disturb surface current distribution, then change the element phase and hence steer the main beam. This work started with investigating and applying new method for beam steering based on using DGS and DMS, where this reflects the first objective. As a second objective, this work proposed new approach for beam steering, where DGS is integrated between two patches for the bandwidth within X-band. The simulated results revealed the achievement of the target to steer the main beam to 50° along H-plane. For the third objective, a spiral antenna array (SAA) has been proposed, and it was observed that the best choice for selecting feed network for feeding circular antenna array is a common sequential feed network (SFN), which has a circular shape with four ports to feed four elements. In order to increase the number of ports and hence design suitable feed network for feeding SAA, this study proposed new spiral sequential feed network (SSFN). As a dual structure of DGS, and compared with DGS, DMS is of great advantage in design due to its reduced size and the feature of electromagnetic interference noise immunity. Furthermore, DMS has higher effective inductance compared to DGS. Therefore, this work proposed new reconfigurable SAA with DMS fed by SSFN within C-band. The simulated results showed the achievement of the target to steer the main beam to 61° and 84° along E-plane and H-plane, respectively. Furthermore, as the last objective, a new approach was proposed for extracting equivalent circuit model for DGS with dual patches, SSFN and SAA. Two prototypes of dual patches with and without DGS, SSFN and two prototypes of SAA with DMS were fabricated for scattering parameter and far-field radiation pattern measurements. The results showed close agreement with the predicted results, where array with DGS confirmed a beam steering of 36° along H-plane, while SAA with DMS displayed 45° beam steering along E-plane, respectively. Future works will focus on increasing the array gain and reducing the array beam width which will give a clear vision for beam steering of array

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page
    • …
    corecore