624 research outputs found

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    Opportunistic off-path content discovery in information-centric networks

    Get PDF
    Recent research in Information-Centric Networks has considered various approaches for discovering content in the cache-enabled nodes of the network. Such approaches include scoped flooding and deploying a control plane protocol to disseminate the cache contents in the network, to name a few. In this work, we consider an opportunistic approach that uses trails left behind by data packets from the content origin to the sources in order to discover off-path cached content. We evaluate our approach using an ISP topology for various system parameters. We propose two new forwarding strategies built on top of our approach. Our results indicate that the opportunistic discovery mechanism can significantly increase cache hit rate compared to NDN's default forwarding strategy, while limiting the overhead at acceptable levels

    A native content discovery mechanism for the information-centric networks

    Get PDF
    Recent research has considered various approaches for discovering content in the cache-enabled nodes of an Autonomous System (AS) to reduce the costly inter-AS traffic. Such approaches include i) searching content opportunistically (on-path) along the default intra-AS path towards the content origin for limited gain, and ii) actively coordinate nodes when caching content for significantly higher gains, but also higher overhead. In this paper, we try to combine the merits of both worlds by using traditional opportunistic caching mechanisms enhanced with a lightweight content discovery approach. Particularly, a content retrieved through an inter-AS link is cached only once along the intra-AS delivery path to maximize network storage utilization, and ephemeral forwarding state to locate temporarily stored content is established opportunistically at each node along that path during the processing of Data packets. The ephemeral forwarding state either points to the arriving or the destination face of the Data packet depending on whether the content has already been cached along the path or not. The challenge in such an approach is to appropriately use and maintain the ephemeral forwarding state to minimize inter-AS content retrieval, while keeping retrieval latency and overhead at acceptable levels. We propose several forwarding strategies to use and manage ephemeral state and evaluate our mechanism using an ISP topology for various system parameters. Our results indicate that our opportunistic content discovery mechanism can achieve near-optimal performance and significantly reduce inter-AS traffic

    Connecting the Edges: A Universal, Mobile-Centric, and Opportunistic Communications Architecture

    Get PDF
    The Internet has crossed new frontiers with access to it getting faster and cheaper. Considering that the architectural foundations of today's Internet were laid more than three decades ago, the Internet has done remarkably well until today coping with the growing demand. However, the future Internet architecture is expected to support not only the ever growing number of users and devices, but also a diverse set of new applications and services. Departing from the traditional host-centric access paradigm, where access to a desired content is mapped to its location, an information-centric model enables the association of access to a desired content with the content itself, irrespective of the location where it is being held. UMOBILE tailors the information-centric communication model to meet the requirements of opportunistic communications, integrating those connectivity approaches into a single architecture. By pushing services near the edge of the network, such an architecture can pervasively operate in any networking environment and allows for the development of innovative applications, providing access to data independent of the level of end-to-end connectivity availability
    • …
    corecore