256,832 research outputs found

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Guidance Notes for Cloud Research Users

    No full text
    There is a rapidly increasing range of research activities which involve the outsourcing of computing and storage resources to public Cloud Service Providers (CSPs), who provide managed and scalable resources virtualised as a single service. For example Amazon Elastic Computing Cloud (EC2) and Simple Storage Service (S3) are two widely adopted open cloud solutions, which aim at providing pooled computing and storage services and charge users according to their weighted resource usage. Other examples include employment of Google Application Engine and Microsoft Azure as development platforms for research applications. Despite a lot of activity and publication on cloud computing, the term itself and the technologies that underpin it are still confusing to many. This note, as one of deliverables of the TeciRes project1, provides guidance to researchers who are potential end users of public CSPs for research activities. The note contains information to researchers on: •The difference between and relation to current research computing models •The considerations that have to be taken into account before moving to cloud-aided research •The issues associated with cloud computing for research that are currently being investigated •Tips and tricks when using cloud computing Readers who are interested in provisioning cloud capabilities for research should also refer to our guidance notes to cloud infrastructure service providers. This guidance notes focuses on technical aspects only. Readers who are interested in non-technical guidance should refer to the briefing paper produced by the “using cloud computing for research” project

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Developing Resource Usage Service in WLCG

    No full text
    According to the Memorandum of Understanding (MoU) of the World-wide LHC Computing Grid (WLCG) project, participating sites are required to provide resource usage or accounting data to the Grid Operational Centre (GOC) to enrich the understanding of how shared resources are used, and to provide information for improving the effectiveness of resource allocation. As a multi-grid environment, the accounting process of WLCG is currently enabled by four accounting systems, each of which was developed independently by constituent grid projects. These accounting systems were designed and implemented based on project-specific local understanding of requirements, and therefore lack interoperability. In order to automate the accounting process in WLCG, three transportation methods are being introduced for streaming accounting data metered by heterogeneous accounting systems into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting data are aggregated and accumulated throughout the year. These transportation methods, however, were introduced on a per accounting-system basis, i.e. targeting at a particular accounting system, making them hard to reuse and customize to new requirements. This paper presents the design of WLCG-RUS system, a standards-compatible solution providing a consistent process for streaming resource usage data across various accounting systems, while ensuring interoperability, portability, and customization
    • …
    corecore