26,065 research outputs found

    Developing front-end Web 2.0 technologies to access services, content and things in the future Internet

    Get PDF
    The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative

    The learning technologies of the future: technologies that learn?

    Get PDF
    Higher Education Institutions (HEIs) operate in a borderless and complex environment, abundant in potentially useful information. The Creating Academic Learning Futures (CALF) research project, carried out in partnership by the University of Leicester and University College Falmouth in the UK, involves the development of approaches and tools for structuring and filtering information, in order to facilitate institutional decision-making in participative and creative ways. One of the aims of the CALF project is to involve students in creating and exploring a variety of plausible ‘alternative futures’ for learning and teaching technologies in higher education. This paper discusses some of the issues that are emerging in the course of the research process and presents ideas for the future, grounded in and emergent from ‘student voices’ from the CALF research project. Students expected the technologies of the near future to enable them to become co-creators in their own education processes. The future scenarios imagined the rise of learning technologies which instead of becoming outdated with use, become more valuable as more user-generated content is invested, technologies which are truly learning in that they learn about their users and constantly morph/adapt to their users’ needs. Finally, increasing virtualisation was a recurrent theme across most student-generated scenarios. The paper concludes with a discussion of some of the strengths and limitations of using technologies for involving students in creative activities for generating future scenarios for higher education. The technologies used by the project enabled collaborative creative thinking across a broader spectrum of possibilities about the relationship between the present and the future of higher education

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    A component- and connector-based approach for end-user composite web applications development

    Get PDF
    Enabling real end-user development is the next logical stage in the evolution of Internet-wide service-based applications. Successful composite applications rely on heavyweight service orchestration technologies that raise the bar far above end-user skills. This weakness can be attributed to the fact that the composition model does not satisfy end-user needs rather than to the actual infrastructure technologies. In our opinion, the best way to overcome this weakness is to offer end-to-end composition from the user interface to service invocation, plus an understandable abstraction of building blocks and a visual composition technique empowering end users to develop their own applications. In this paper, we present a visual framework for end users, called FAST, which fulfils this objective. FAST implements a novel composition model designed to empower non-programmer end users to create and share their own self-service composite applications in a fully visual fashion. We projected the development environment implementing this model as part of the European FP7 FAST Project, which was used to validate the rationale behind our approach

    User driven modelling: Visualisation and systematic interaction for end-user programming with tree-based structures

    Get PDF
    This thesis addresses certain problems encountered by teams of engineers when modelling complex structures and processes subject to cost and other resource constraints. The cost of a structure or process may be ‘read off’ its specifying model, but the language in which the model is expressed (e.g. CAD) and the language in which resources may be modelled (e.g. spreadsheets) are not naturally compatible. This thesis demonstrates that a number of intermediate steps may be introduced which enable both meaningful translation from one conceptual view to another as well as meaningful collaboration between team members. The work adopts a diagrammatic modelling approach as a natural one in an engineering context when seeking to establish a shared understanding of problems.Thus, the research question to be answered in this thesis is: ‘To what extent is it possible to improve user-driven software development through interaction with diagrams and without requiring users to learn particular computer languages?’ The goal of the research is to improve collaborative software development through interaction with diagrams, thereby minimising the need for end-users to code directly. To achieve this aim a combination of the paradigms of End-User Programming, Process and Product Modelling and Decision Support, and Semantic Web are exploited and a methodology of User Driven Modelling and Programming (UDM/P) is developed, implemented, and tested as a means of demonstrating the efficacy of diagrammatic modelling.In greater detail, the research seeks to show that diagrammatic modelling eases problems of maintenance, extensibility, ease of use, and sharing of information. The methodology presented here to achieve this involves a three step translation from a visualised ontology, through a modelling tool, to output to interactive visualisations. An analysis of users groups them into categories of system creator, model builder, and model user. This categorisation corresponds well with the three-step translation process where users develop the ontology, modelling tool, and visualisations for their problem.This research establishes and exemplifies a novel paradigm of collaborative end-user programming by domain experts. The end-user programmers can use a visual interface where the visualisation of the software exactly matches the structure of the software itself, making translation between user and computer, and vice versa, much more direct and practical. The visualisation is based on an ontology that provides a representation of the software as a tree. The solution is based on translation from a source tree to a result tree, and visualisation of both. The result tree shows a structured representation of the model with a full visualisation of all parts that leads to the computed result.In conclusion, it is claimed that this direct representation of the structure enables an understanding of the program as an ontology and model that is then visualised, resulting in a more transparent shared understanding by all users. It is further argued that our diagrammatic modelling paradigm consequently eases problems of maintenance, extensibility, ease of use, and sharing of information. This method is applicable to any problem that lends itself to representation as a tree. This is considered a limitation of the method to be addressed in a future project

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network
    corecore