28,041 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    SQL Query Completion for Data Exploration

    Full text link
    Within the big data tsunami, relational databases and SQL are still there and remain mandatory in most of cases for accessing data. On the one hand, SQL is easy-to-use by non specialists and allows to identify pertinent initial data at the very beginning of the data exploration process. On the other hand, it is not always so easy to formulate SQL queries: nowadays, it is more and more frequent to have several databases available for one application domain, some of them with hundreds of tables and/or attributes. Identifying the pertinent conditions to select the desired data, or even identifying relevant attributes is far from trivial. To make it easier to write SQL queries, we propose the notion of SQL query completion: given a query, it suggests additional conditions to be added to its WHERE clause. This completion is semantic, as it relies on the data from the database, unlike current completion tools that are mostly syntactic. Since the process can be repeated over and over again -- until the data analyst reaches her data of interest --, SQL query completion facilitates the exploration of databases. SQL query completion has been implemented in a SQL editor on top of a database management system. For the evaluation, two questions need to be studied: first, does the completion speed up the writing of SQL queries? Second , is the completion easily adopted by users? A thorough experiment has been conducted on a group of 70 computer science students divided in two groups (one with the completion and the other one without) to answer those questions. The results are positive and very promising

    Re-mining item associations: methodology and a case study in apparel retailing

    Get PDF
    Association mining is the conventional data mining technique for analyzing market basket data and it reveals the positive and negative associations between items. While being an integral part of transaction data, pricing and time information have not been integrated into market basket analysis in earlier studies. This paper proposes a new approach to mine price, time and domain related attributes through re-mining of association mining results. The underlying factors behind positive and negative relationships can be characterized and described through this second data mining stage. The applicability of the methodology is demonstrated through the analysis of data coming from a large apparel retail chain, and its algorithmic complexity is analyzed in comparison to the existing techniques
    corecore