1,752 research outputs found

    Deep Fluids: A Generative Network for Parameterized Fluid Simulations

    Full text link
    This paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capability of deep learning architectures to learn representative features of the data, our generative model is able to accurately approximate the training data set, while providing plausible interpolated in-betweens. The proposed generative model is optimized for fluids by a novel loss function that guarantees divergence-free velocity fields at all times. In addition, we demonstrate that we can handle complex parameterizations in reduced spaces, and advance simulations in time by integrating in the latent space with a second network. Our method models a wide variety of fluid behaviors, thus enabling applications such as fast construction of simulations, interpolation of fluids with different parameters, time re-sampling, latent space simulations, and compression of fluid simulation data. Reconstructed velocity fields are generated up to 700x faster than re-simulating the data with the underlying CPU solver, while achieving compression rates of up to 1300x.Comment: Computer Graphics Forum (Proceedings of EUROGRAPHICS 2019), additional materials: http://www.byungsoo.me/project/deep-fluids

    Diffusion Models for Probabilistic Deconvolution of Galaxy Images

    Full text link
    Telescopes capture images with a particular point spread function (PSF). Inferring what an image would have looked like with a much sharper PSF, a problem known as PSF deconvolution, is ill-posed because PSF convolution is not an invertible transformation. Deep generative models are appealing for PSF deconvolution because they can infer a posterior distribution over candidate images that, if convolved with the PSF, could have generated the observation. However, classical deep generative models such as VAEs and GANs often provide inadequate sample diversity. As an alternative, we propose a classifier-free conditional diffusion model for PSF deconvolution of galaxy images. We demonstrate that this diffusion model captures a greater diversity of possible deconvolutions compared to a conditional VAE.Comment: Accepted to the ICML 2023 Workshop on Machine Learning for Astrophysic

    CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens Finding

    Get PDF
    Galaxy-scale strong gravitational lensing is not only a valuable probe of the dark matter distribution of massive galaxies, but can also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as LSST, Euclid, and WFIRST. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on Deep Learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20,000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99%, a completeness of 90% can be achieved for lenses with Einstein radii larger than 1.4" and S/N larger than 20 on individual gg-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens .Comment: 12 pages, 9 figures, submitted to MNRA

    TOWARD DEEP LEARNING EMULATORS FOR MODELING THE LARGE-SCALE STRUCTURE OF THE UNIVERSE

    Get PDF
    Multi-billion dollar cosmological surveys are being conducted almost every decade in today’s era of precision cosmology. These surveys scan vast swaths of sky and generate tons of observational data. In order to extract meaningful information from this data and test these observations against theory, rigorous theoretical predictions are needed. In the absence of an analytic method, cosmological simulations become the most widely used tool to provide these predictions in order to test against the observations. They can be used to study covariance matrices, generate mock galaxy catalogs and provide ready-to-use snapshots for detailed redshift analyses. But cosmological simulations of matter formation in the universe are one of the most computationally intensive tasks. Faster but equally reliable tools that could approximate these simulations are thus desperately needed. Recently, deep learning has come up as an innovative and novel tool that can generate numerous cosmological simulations orders of magnitude faster than traditional simulations. Deep learning models of structure formation and evolution in the universe are unimaginably fast and retain most of the accuracy of conventional simulations, thus providing a fast, reliable, efficient, and accurate method to study the evolution of the universe and reducing the computational burden of current simulation methods. In this dissertation, we will focus on deep learning-based models that could mimic the process of structure formation in the universe. In particular, we focus on developing deep convolutional neural network models that could learn the present 3D distribution of the cold dark matter and generate 2D dark matter cosmic mass maps. We employ summary statistics most commonly employed in cosmology and computer vision to quantify the robustness of our models

    Astronomia ex machina: a history, primer, and outlook on neural networks in astronomy

    Get PDF
    In recent years, deep learning has infiltrated every field it has touched, reducing the need for specialist knowledge and automating the process of knowledge discovery from data. This review argues that astronomy is no different, and that we are currently in the midst of a deep learning revolution that is transforming the way we do astronomy. We trace the history of astronomical connectionism from the early days of multilayer perceptrons, through the second wave of convolutional and recurrent neural networks, to the current third wave of self-supervised and unsupervised deep learning. We then predict that we will soon enter a fourth wave of astronomical connectionism, in which finetuned versions of an all-encompassing 'foundation' model will replace expertly crafted deep learning models. We argue that such a model can only be brought about through a symbiotic relationship between astronomy and connectionism, whereby astronomy provides high quality multimodal data to train the foundation model, and in turn the foundation model is used to advance astronomical research.Comment: 60 pages, 269 references, 29 figures. Review submitted to Royal Society Open Science. Comments and feedback welcom

    Fast Point Spread Function Modeling with Deep Learning

    Full text link
    Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCLMCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCLMCCL framework.Comment: 25 pages, 8 figures, 1 tabl
    • …
    corecore