79 research outputs found

    Short-Term Plasticity Neurons Learning to Learn and Forget

    Full text link
    Short-term plasticity (STP) is a mechanism that stores decaying memories in synapses of the cerebral cortex. In computing practice, STP has been used, but mostly in the niche of spiking neurons, even though theory predicts that it is the optimal solution to certain dynamic tasks. Here we present a new type of recurrent neural unit, the STP Neuron (STPN), which indeed turns out strikingly powerful. Its key mechanism is that synapses have a state, propagated through time by a self-recurrent connection-within-the-synapse. This formulation enables training the plasticity with backpropagation through time, resulting in a form of learning to learn and forget in the short term. The STPN outperforms all tested alternatives, i.e. RNNs, LSTMs, other models with fast weights, and differentiable plasticity. We confirm this in both supervised and reinforcement learning (RL), and in tasks such as Associative Retrieval, Maze Exploration, Atari video games, and MuJoCo robotics. Moreover, we calculate that, in neuromorphic or biological circuits, the STPN minimizes energy consumption across models, as it depresses individual synapses dynamically. Based on these, biological STP may have been a strong evolutionary attractor that maximizes both efficiency and computational power. The STPN now brings these neuromorphic advantages also to a broad spectrum of machine learning practice. Code is available at https://github.com/NeuromorphicComputing/stpnComment: Accepted at ICML 202

    Exploring Neuromodulatory Systems for Dynamic Learning

    Get PDF
    In a continual learning system, the network has to dynamically learn new tasks from few samples throughout its lifetime. It is observed that neuromodulation acts as a key factor in continual and dynamic learning in the central nervous system. In this work, the neuromodulatory plasticity is embedded with dynamic learning architectures. The network has an inbuilt modulatory unit that regulates learning depending on the context and the internal state of the system, thus rendering the networks with the ability to self modify their weights. In one of the proposed architectures, ModNet, a modulatory layer is introduced in a random projection framework. This layer modulates the weights of the output layer neurons in tandem with hebbian learning. Moreover, to explore modulatory mechanisms in conjunction with backpropagation in deeper networks, a modulatory trace learning rule is introduced. The proposed learning rule, uses a time dependent trace to automatically modify the synaptic connections as a function of ongoing states and activations. The trace itself is updated via simple plasticity rules thus reducing the demand on resources. A digital architecture is proposed for ModNet, with on-device learning and resource sharing, to facilitate the efficacy of dynamic learning on the edge. The proposed modulatory learning architecture and learning rules demonstrate the ability to learn from few samples, train quickly, and perform one shot image classification in a computationally efficient manner. The ModNet architecture achieves an accuracy of ∼91% for image classification on the MNIST dataset while training for just 2 epochs. The deeper network with modulatory trace achieves an average accuracy of 98.8%±1.16 on the omniglot dataset for five-way one-shot image classification task. In general, incorporating neuromodulation in deep neural networks shows promise for energy and resource efficient lifelong learning systems

    Oscillatory neural network learning for pattern recognition:an on-chip learning perspective and implementation

    Get PDF
    In the human brain, learning is continuous, while currently in AI, learning algorithms are pre-trained, making the model non-evolutive and predetermined. However, even in AI models, environment and input data change over time. Thus, there is a need to study continual learning algorithms. In particular, there is a need to investigate how to implement such continual learning algorithms on-chip. In this work, we focus on Oscillatory Neural Networks (ONNs), a neuromorphic computing paradigm performing auto-associative memory tasks, like Hopfield Neural Networks (HNNs). We study the adaptability of the HNN unsupervised learning rules to on-chip learning with ONN. In addition, we propose a first solution to implement unsupervised on-chip learning using a digital ONN design. We show that the architecture enables efficient ONN on-chip learning with Hebbian and Storkey learning rules in hundreds of microseconds for networks with up to 35 fully-connected digital oscillators.</p

    Bayesian Continual Learning via Spiking Neural Networks

    Full text link
    Among the main features of biological intelligence are energy efficiency, capacity for continual adaptation, and risk management via uncertainty quantification. Neuromorphic engineering has been thus far mostly driven by the goal of implementing energy-efficient machines that take inspiration from the time-based computing paradigm of biological brains. In this paper, we take steps towards the design of neuromorphic systems that are capable of adaptation to changing learning tasks, while producing well-calibrated uncertainty quantification estimates. To this end, we derive online learning rules for spiking neural networks (SNNs) within a Bayesian continual learning framework. In it, each synaptic weight is represented by parameters that quantify the current epistemic uncertainty resulting from prior knowledge and observed data. The proposed online rules update the distribution parameters in a streaming fashion as data are observed. We instantiate the proposed approach for both real-valued and binary synaptic weights. Experimental results using Intel's Lava platform show the merits of Bayesian over frequentist learning in terms of capacity for adaptation and uncertainty quantification.Comment: Accepted for publication in Frontiers in Computational Neuroscienc

    Dimensions of Timescales in Neuromorphic Computing Systems

    Get PDF
    This article is a public deliverable of the EU project "Memory technologies with multi-scale time constants for neuromorphic architectures" (MeMScales, https://memscales.eu, Call ICT-06-2019 Unconventional Nanoelectronics, project number 871371). This arXiv version is a verbatim copy of the deliverable report, with administrative information stripped. It collects a wide and varied assortment of phenomena, models, research themes and algorithmic techniques that are connected with timescale phenomena in the fields of computational neuroscience, mathematics, machine learning and computer science, with a bias toward aspects that are relevant for neuromorphic engineering. It turns out that this theme is very rich indeed and spreads out in many directions which defy a unified treatment. We collected several dozens of sub-themes, each of which has been investigated in specialized settings (in the neurosciences, mathematics, computer science and machine learning) and has been documented in its own body of literature. The more we dived into this diversity, the more it became clear that our first effort to compose a survey must remain sketchy and partial. We conclude with a list of insights distilled from this survey which give general guidelines for the design of future neuromorphic systems
    • …
    corecore