65,963 research outputs found

    Performance and efficiency optimization of multi-layer IoT edge architecture

    Get PDF
    Abstract. Internet of Things (IoT) has become a backbone technology that connects together various devices with diverse capabilities. It is a technology, which enables ubiquitously available digital services for end-users. IoT applications for mission-critical scenarios need strict performance indicators such as of latency, scalability, security and privacy. To fulfil these requirements, IoT also requires support from relevant enabling technologies, such as cloud, edge, virtualization and fifth generation mobile communication (5G) technologies. For Latency-critical applications and services, long routes between the traditional cloud server and end-devices (sensors /actuators) is not a feasible approach for computing at these data centres, although these traditional clouds provide very high computational and storage for current IoT system. MEC model can be used to overcome this challenge, which brings the CC computational capacity within or next on the access network base stations. However, the capacity to perform the most critical processes at the local network layer is often necessary to cope with the access network issues. Therefore, this thesis compares the two existing IoT models such as traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, with proposed local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results consolidate our research team’s previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical It applications

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    What can AI do for you?

    Get PDF
    Simply put, most organizations do not know how to approach the incorporation of AI into their businesses, and few are knowledgeable enough to understand which concepts are applicable to their business models. Doing nothing and waiting is not an option: Mahidar and Davenport (2018) argue that companies that try to play catch-up will ultimately lose to those who invested and began learning early. But how do we bridge the gap between skepticism and adoption? We propose a toolkit, inclusive of people, processes, and technologies, to help companies with discovery and readiness to start their AI journey. Our toolkit will deliver specific and actionable answers to the operative question: What can AI do for you
    • …
    corecore