5,267 research outputs found

    Enabling analytics on sensitive medical data with secure multi-party computation

    Get PDF
    While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multiparty computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace

    Enabling Interactive Analytics of Secure Data using Cloud Kotta

    Full text link
    Research, especially in the social sciences and humanities, is increasingly reliant on the application of data science methods to analyze large amounts of (often private) data. Secure data enclaves provide a solution for managing and analyzing private data. However, such enclaves do not readily support discovery science---a form of exploratory or interactive analysis by which researchers execute a range of (sometimes large) analyses in an iterative and collaborative manner. The batch computing model offered by many data enclaves is well suited to executing large compute tasks; however it is far from ideal for day-to-day discovery science. As researchers must submit jobs to queues and wait for results, the high latencies inherent in queue-based, batch computing systems hinder interactive analysis. In this paper we describe how we have augmented the Cloud Kotta secure data enclave to support collaborative and interactive analysis of sensitive data. Our model uses Jupyter notebooks as a flexible analysis environment and Python language constructs to support the execution of arbitrary functions on private data within this secure framework.Comment: To appear in Proceedings of Workshop on Scientific Cloud Computing, Washington, DC USA, June 2017 (ScienceCloud 2017), 7 page
    corecore