297 research outputs found

    Hybrid Simulator for Space Docking and Robotic Proximity Operations

    Full text link
    In this work, we present a hybrid simulator for space docking and robotic proximity operations methodology. This methodology also allows for the emulation of a target robot operating in a complex environment by using an actual robot. The emulation scheme aims to replicate the dynamic behavior of the target robot interacting with the environment, without dealing with a complex calculation of the contact dynamics. This method forms a basis for the task verification of a flexible space robot. The actual emulating robot is structurally rigid, while the target robot can represent any class of robots, e.g., flexible, redundant, or space robots. Although the emulating robot is not dynamically equivalent to the target robot, the dynamical similarity can be achieved by using a control law developed herein. The effect of disturbances and actuator dynamics on the fidelity and the contact stability of the robot emulation is thoroughly analyzed

    Six-DOF Spacecraft Dynamics Simulator For Testing Translation and Attitude Control

    Full text link
    This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented

    The dynamic control of robotic manipulators in space

    Get PDF
    Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development

    On the validation of SPDM task verification facility

    Get PDF
    This paper describes a methodology for validating a ground-based, hardware-in-the-loop, space-robot simulation facility. This facility, called ‘‘SPDM task verification facility,’’ is being developed by the Canadian Space Agency for the purpose of verifying the contact dynamics performance of the special purpose dexterous manipulator (SPDM) performing various maintenance tasks on the International Space Station because the real SPDM cannot be physically tested for 3D operations on the ground due to the gravity. The facility uses a high-fidelity SPDM mathematical model, known as the ‘‘truth model’’ of the space robot, to drive a hydraulic robot to mimic the space robot performing contact operations. In this research different techniques were studied for practically verifying that the complex\ud simulation facility preserves the dynamics of the truth model of the space robot for space-representative contact robotic tasks. Based upon the study and many years of experience in developing and verifying space robotic systems, a practical validation strategy including detailed test cases was developed along with a set of quantitative criteria for judging the validation test results

    DETC2009-86529 IMPEDANCE CONTROL OF MANIPULATORS WITH HEAVY PAYLOAD FOR SPACECRAFT RENDEZVOUS & DOCKING SIMULATORS

    Get PDF
    ABSTRACT This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of external applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scale

    Mechanical engineering challenges in humanoid robotics

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 36-39).Humanoid robots are artificial constructs designed to emulate the human body in form and function. They are a unique class of robots whose anthropomorphic nature renders them particularly well-suited to interact with humans in a world designed for humans. The present work examines a subset of the plethora of engineering challenges that face modem developers of humanoid robots, with a focus on challenges that fall within the domain of mechanical engineering. The challenge of emulating human bipedal locomotion on a robotic platform is reviewed in the context of the evolutionary origins of human bipedalism and the biomechanics of walking and running. Precise joint angle control bipedal robots and passive-dynamic walkers, the two most prominent classes of modem bipedal robots, are found to have their own strengths and shortcomings. An integration of the strengths from both classes is likely to characterize the next generation of humanoid robots. The challenge of replicating human arm and hand dexterity with a robotic system is reviewed in the context of the evolutionary origins and kinematic structure of human forelimbs. Form-focused design and function-focused design, two distinct approaches to the design of modem robotic arms and hands, are found to have their own strengths and shortcomings. An integration of the strengths from both approaches is likely to characterize the next generation of humanoid robots.by Peter Guang Yi Lu.S.B

    Technology transfer of operator-in-the-loop simulation

    Get PDF
    The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design

    Design analysis of a Stewart platform for vehicle emulator systems

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1992.Includes bibliographical references (leaves 98-103).by Youhong Gong.M.S

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge
    • …
    corecore