264 research outputs found

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    Implementation of Lenia as a Reaction-Diffusion System

    Full text link
    The relationship between reaction-diffusion (RD) systems, characterized by continuous spatiotemporal states, and cellular automata (CA), marked by discrete spatiotemporal states, remains poorly understood. This paper delves into this relationship through an examination of a recently developed CA known as Lenia. We demonstrate that asymptotic Lenia, a variant of Lenia, can be comprehensively described by differential equations, and, unlike the original Lenia, it is independent of time-step ticks. Further, we establish that this formulation is mathematically equivalent to a generalization of the kernel-based Turing model (KT model). Stemming from these insights, we establish that asymptotic Lenia can be replicated by an RD system composed solely of diffusion and spatially local reaction terms, resulting in the simulated asymptotic Lenia based on an RD system, or "RD Lenia". However, our RD Lenia cannot be construed as a chemical system since the reaction term fails to satisfy mass-action kinetics.Comment: Accepted to ALIFE 202

    Reaction–diffusion chemistry implementation of associative memory neural network

    Get PDF
    Unconventional computing paradigms are typically very difficult to program. By implementing efficient parallel control architectures such as artificial neural networks, we show that it is possible to program unconventional paradigms with relative ease. The work presented implements correlation matrix memories (a form of artificial neural network based on associative memory) in reaction–diffusion chemistry, and shows that implementations of such artificial neural networks can be trained and act in a similar way to conventional implementations

    Chemical Wave Computing from Labware to Electrical Systems

    Get PDF
    Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and enable a more detailedinvestigation of their capacity. As expected, the computerized counterparts of the laboratory based experiments are faster and less expensive. A further step of acceleration in wave-based computingis the development of electrical circuits that imitate the dynamics of chemical computers. A key component of the electrical circuits is the memristor which facilitates the non-linear behavior of the chemical systems. As part of this concept, the road-map of the inspiration from wave-based computing on chemical media towards the implementation of equivalent systems on oscillating memristive circuits was studied here. For illustration reasons, the most straightforward example was demonstrated, namely the approximation of Boolean gates

    Autopoiesis of the artificial: from systems to cognition

    Get PDF
    In the seminal work on autopoiesis by Varela, Maturana, and Uribe, they start by addressing the confusion between processes that are history dependent and processes that are history independent in the biological world. The former is particularly linked to evolution and ontogenesis, while the latter pertains to the organizational features of biological individuals. Varela, Maturana, and Uribe reject this framework and propose their original theory of autopoietic organization, which emphasizes the strong complementarity of temporal and non-temporal phenomena. They argue that the dichotomy between structure and organization lies at the core of the unity of living systems. By opposing history-dependent and history-independent processes, methodological challenges arise in explaining phenomena related to living systems and cognition. Consequently, Maturana and Varela reject this approach in defining autopoietic organization. I argue, however, that this relationship presents an issue that can be found in recent developments of the science of artificial intelligence (AI) in different ways, giving rise to related concerns. While highly capable AI systems exist that can perform cognitive tasks, their internal workings and the specific contributions of their components to the overall system behavior, understood as a unified whole, remain largely uninterpretable. This article explores the connection between biological systems, cognition, and recent developments in AI systems that could potentially be linked to autopoiesis and related concepts such as autonomy and organization. The aim is to assess the advantages and disadvantages of employing autopoiesis in the synthetic (artificial) explanation for biological cognitive systems and to determine if and how the notion of autopoiesis can still be fruitful in this perspective

    Rule Derivation for Agent-Based Models of Complex Systems: Nuclear Waste Management and Road Networks Case Studies

    Get PDF
    This thesis explores the relation between equation-based models (EBMs) and agent-based models (ABMs), in particular, the derivation of agent rules from equations such that agent collective behavior produces results that match or are close to those from EBMs. This allows studying phenomena using both approaches and obtaining an understanding of the aggregate behavior as well as the individual mechanisms that produce them. The use of ABMs allows the inclusion of more realistic features that would not be possible (or would be difficult to include) using EBMs. The first part of the thesis studies the derivation of molecule displacement probabilities from the diffusion equation using cellular automata. The derivation is extended to include reaction and advection terms. This procedure is later applied to estimate lifetimes of nuclear waste containers for various scenarios of interest and the inclusion of uncertainty. The second part is concerned with the derivation of a Bayesian state algorithm that consolidates collective real-time information about the state of a given system and outputs a probability density function of state domain, from which the most probable state can be computed at any given time. This estimation is provided to agents so that they can choose the best option for them. The algorithm includes a diffusion or diffusion-like term to account for the deterioration of information as time goes on. This algorithm is applied to a couple of road networks where drivers, prior to selecting a route, have access to current information about the traffic and are able to decide which path to follow. Both problems are complex due to heterogeneous components, nonlinearities, and stochastic behavior; which make them difficult to describe using classical equation models such as the diffusion equation or optimization models. The use of ABMs allowed for the inclusion of such complex features in the study of their respective systems
    • …
    corecore