71,671 research outputs found

    On Vertex- and Empty-Ply Proximity Drawings

    Full text link
    We initiate the study of the vertex-ply of straight-line drawings, as a relaxation of the recently introduced ply number. Consider the disks centered at each vertex with radius equal to half the length of the longest edge incident to the vertex. The vertex-ply of a drawing is determined by the vertex covered by the maximum number of disks. The main motivation for considering this relaxation is to relate the concept of ply to proximity drawings. In fact, if we interpret the set of disks as proximity regions, a drawing with vertex-ply number 1 can be seen as a weak proximity drawing, which we call empty-ply drawing. We show non-trivial relationships between the ply number and the vertex-ply number. Then, we focus on empty-ply drawings, proving some properties and studying what classes of graphs admit such drawings. Finally, we prove a lower bound on the ply and the vertex-ply of planar drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension 34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)
    corecore