6,360 research outputs found

    Guarding curvilinear art galleries with edge or mobile guards via 2-dominance of triangulation graphs

    Get PDF
    AbstractIn this paper we consider the problem of monitoring an art gallery modeled as a polygon, the edges of which are arcs of curves, with edge or mobile guards. Our focus is on piecewise-convex polygons, i.e., polygons that are locally convex, except possibly at the vertices, and their edges are convex arcs.We transform the problem of monitoring a piecewise-convex polygon to the problem of 2-dominating a properly defined triangulation graph with edges or diagonals, where 2-dominance requires that every triangle in the triangulation graph has at least two of its vertices in its 2-dominating set. We show that: (1) ⌊n+13⌋ diagonal guards are always sufficient and sometimes necessary, and (2) ⌊2n+15⌋ edge guards are always sufficient and sometimes necessary, in order to 2-dominate a triangulation graph. Furthermore, we show how to compute: (1) a diagonal 2-dominating set of size ⌊n+13⌋ in linear time and space, (2) an edge 2-dominating set of size ⌊2n+15⌋ in O(n2) time and O(n) space, and (3) an edge 2-dominating set of size ⌊3n7⌋ in O(n) time and space.Based on the above-mentioned results, we prove that, for piecewise-convex polygons, we can compute: (1) a mobile guard set of size ⌊n+13⌋ in O(nlogn) time, (2) an edge guard set of size ⌊2n+15⌋ in O(n2) time, and (3) an edge guard set of size ⌊3n7⌋ in O(nlogn) time. All space requirements are linear. Finally, we show that ⌊n3⌋ mobile or ⌈n3⌉ edge guards are sometimes necessary.When restricting our attention to monotone piecewise-convex polygons, the bounds mentioned above drop: ⌈n+14⌉ edge or mobile guards are always sufficient and sometimes necessary; such an edge or mobile guard set, of size at most ⌈n+14⌉, can be computed in O(n) time and space

    Completely empty pyramids on integer lattices and two-dimensional faces of multidimensional continued fractions

    Full text link
    In this paper we develop an integer-affine classification of three-dimensional multistory completely empty convex marked pyramids. We apply it to obtain the complete lists of compact two-dimensional faces of multidimensional continued fractions lying in planes with integer distances to the origin equal 2, 3, 4 ... The faces are considered up to the action of the group of integer-linear transformations. In conclusion we formulate some actual unsolved problems associated with the generalizations for n-dimensional faces and more complicated face configurations.Comment: Minor change

    Holes or Empty Pseudo-Triangles in Planar Point Sets

    Full text link
    Let E(k,)E(k, \ell) denote the smallest integer such that any set of at least E(k,)E(k, \ell) points in the plane, no three on a line, contains either an empty convex polygon with kk vertices or an empty pseudo-triangle with \ell vertices. The existence of E(k,)E(k, \ell) for positive integers k,3k, \ell\geq 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565--576, 2007]. In this paper, following a series of new results about the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of E(k,5)E(k, 5) and E(5,)E(5, \ell), and prove bounds on E(k,6)E(k, 6) and E(6,)E(6, \ell), for k,3k, \ell\geq 3. By dropping the emptiness condition, we define another related quantity F(k,)F(k, \ell), which is the smallest integer such that any set of at least F(k,)F(k, \ell) points in the plane, no three on a line, contains a convex polygon with kk vertices or a pseudo-triangle with \ell vertices. Extending a result of Bisztriczky and T\'oth [Discrete Geometry, Marcel Dekker, 49--58, 2003], we obtain the exact values of F(k,5)F(k, 5) and F(k,6)F(k, 6), and obtain non-trivial bounds on F(k,7)F(k, 7).Comment: A minor error in the proof of Theorem 2 fixed. Typos corrected. 19 pages, 11 figure

    Relative Convex Hull Determination from Convex Hulls in the Plane

    Full text link
    A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.Comment: 15 pages, 4 figures, Conference paper published. We corrected two typing errors in Definition 2: ISI_S has to be defined based on OSO_S, and IEI_E has to be defined based on OEO_E (not just using OO). These errors appeared in the text of the original conference paper, which also contained the pseudocode of an algorithm where ISI_S and IEI_E appeared as correctly define
    corecore