15,783 research outputs found

    Empowering truth discovery with multi-truth prediction

    Get PDF
    Truth discovery is the problem of detecting true values from the con icting data provided by multiple sources on the same data items. Since sources' reliability is unknown a priori, a truth discovery method usually estimates sources' reliability along with the truth discovery process. A major limitation of existing truth discovery methods is that they commonly assume exactly one true value on each data item and therefore cannot deal with the more general case that a data item may have multiple true values (or multi-truth). Since the number of true values may vary from data item to data item, this requires truth discovery methods being able to detect varying numbers of truth values from the multi source data. In this paper, we propose a multi-truth discovery approach, which addresses the above challenges by providing a generic framework for enhancing existing truth discovery methods. In particular, we redeem the numbers of true values as an important clue for facilitating multi-truth discovery. We present the procedure and components of our approach, and propose three models, namely the byproduct model, the joint model, and the synthesis model to implement our approach. We further propose two extensions to enhance our approach, by leveraging the implications of similar numerical values and values' co-occurrence informa- tion in sources' claims to improve the truth discovery accuracy. Experimental studies on real-world datasets demonstrate the effectiveness of our approach.Xianzhi Wang, Quan Z. Sheng, Lina Yao, Xue Li, Xiu Susie Fang, Xiaofei Xu, and Boualem Benatalla

    GIT-Mol: A Multi-modal Large Language Model for Molecular Science with Graph, Image, and Text

    Full text link
    Large language models have made significant strides in natural language processing, paving the way for innovative applications including molecular representation and generation. However, most existing single-modality approaches cannot capture the abundant and complex information in molecular data. Here, we introduce GIT-Mol, a multi-modal large language model that integrates the structure Graph, Image, and Text information, including the Simplified Molecular Input Line Entry System (SMILES) and molecular captions. To facilitate the integration of multi-modal molecular data, we propose GIT-Former, a novel architecture capable of mapping all modalities into a unified latent space. Our study develops an innovative any-to-language molecular translation strategy and achieves a 10%-15% improvement in molecular captioning, a 5%-10% accuracy increase in property prediction, and a 20% boost in molecule generation validity compared to baseline or single-modality models.Comment: 16 pages, 5 figure

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful

    eX-ViT: A Novel eXplainable Vision Transformer for Weakly Supervised Semantic Segmentation

    Get PDF
    Recently vision transformer models have become prominent models for a range of vision tasks. These models, however, are usually opaque with weak feature interpretability. Moreover, there is no method currently built for an intrinsically interpretable transformer, which is able to explain its reasoning process and provide a faithful explanation. To close these crucial gaps, we propose a novel vision transformer dubbed the eXplainable Vision Transformer (eX-ViT), an intrinsically interpretable transformer model that is able to jointly discover robust interpretable features and perform the prediction. Specifically, eX-ViT is composed of the Explainable Multi-Head Attention (E-MHA) module, the Attribute-guided Explainer (AttE) module and the self-supervised attribute-guided loss. The E-MHA tailors explainable attention weights that are able to learn semantically interpretable representations from local patches in terms of model decisions with noise robustness. Meanwhile, AttE is proposed to encode discriminative attribute features for the target object through diverse attribute discovery, which constitutes faithful evidence for the model's predictions. In addition, a self-supervised attribute-guided loss is developed for our eX-ViT, which aims at learning enhanced representations through the attribute discriminability mechanism and attribute diversity mechanism, to localize diverse and discriminative attributes and generate more robust explanations. As a result, we can uncover faithful and robust interpretations with diverse attributes through the proposed eX-ViT
    • …
    corecore