4,482 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Communication for Teams of Networked Robots

    Get PDF
    There are a large class of problems, from search and rescue to environmental monitoring, that can benefit from teams of mobile robots in environments where there is no existing infrastructure for inter-agent communication. We seek to address the problems necessary for a team of small, low-power, low-cost robots to deploy in such a way that they can dynamically provide their own multi-hop communication network. To do so, we formulate a situational awareness problem statement that specifies both the physical task and end-to-end communication rates that must be maintained. In pursuit of a solution to this problem, we address topics ranging from the modeling of point-to-point wireless communication to mobility control for connectivity maintenance. Since our focus is on developing solutions to these problems that can be experimentally verified, we also detail the design and implantation of a decentralized testbed for multi-robot research. Experiments on this testbed allow us to determine data-driven models for point-to-point wireless channel prediction, test relative signal-strength-based localization methods, and to verify that our algorithms for mobility control maintain the desired instantaneous rates when routing through the wireless network. The tools we develop are integral to the fielding of teams of robots with robust wireless network capabilities

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    Control of Networked Robotic Systems

    Get PDF
    With the infrastructure of ubiquitous networks around the world, the study of robotic systems over communication networks has attracted widespread attention. This area is denominated as networked robotic systems. By exploiting the fruitful technological developments in networking and computing, networked robotic systems are endowed with potential and capabilities for several applications. Robots within a network are capable of connecting with control stations, human operators, sensors, and other robots via digital communication over possibly noisy channels/media. The issues of time delays in communication and data losses have emerged as a pivotal issue that have stymied practical deployment. The aim of this dissertation is to develop control algorithms and architectures for networked robotic systems that guarantee stability with improved overall performance in the presence of time delays in communication. The first topic addressed in this dissertation is controlled synchronization that is utilized for networked robotic systems to achieve collective behaviors. Exploiting passivity property of individual robotic systems, the proposed control schemes and interconnections are shown to ensure stability and convergence of synchronizing errors. The robustness of the control algorithms to constant and time-varying communication delays is also studied. In addition to time delays, the number of communication links, which prevents scalability of networked robotic systems, is another challenging issue. Thus, a synchronizing control with practically feasible constraints of network topology is developed. The problem of networked robotic systems interacting with human operators is then studied subsequently. This research investigates a teleoperation system with heterogeneous robots under asymmetric and unknown communication delays. Sub-task controllers are proposed for redundant slave robot to autonomously achieve additional tasks, such as singularity avoidance, joint angle limits, and collision avoidance. The developed control algorithms can enhance the efficiency of teleoperation systems, thereby ameliorating the performance degradation due to cognitive limitations of human operator and incomplete information about the environment. Compared to traditional robotic systems, control of robotic manipulators over networks has significant advantages; for example, increased flexibility and ease of maintenance. With the utilization of scattering variables, this research demonstrates that transmitting scattering variables over delayed communications can stabilize an otherwise unstable system. An architecture utilizing delayed position feedback in conjunction with scattering variables is developed for the case of time-varying communication delays. The proposed control architecture improves tracking performance and stabilizes robotic manipulators with input-output communication delays. The aforementioned control algorithms and architectures for networked robotic systems are validated via numerical examples and experiments

    A Survey on Formation Control of Small Satellites

    Get PDF
    • …
    corecore