4,849 research outputs found

    Software Engineering Education and Games: A Systematic Literature Review

    Get PDF
    The trend in using games in elementary level education also spreads through higher education levels and specific domains such as engineering. Recently, researchers have shown an increased interest in the usage of games in software engineering. In this paper, we are presenting a systematic review and analysis of 350 papers regarding games in software engineering education that was published in the last fifteen years. After applying our inclusion criteria and manual inspection of these studies, we have ended up with 53 primary papers. Based on a systematic process, we reported and discussed our findings with possible future research directions. The main results of this study indicate that the studies are accumulated around 5 categories: Games that learners/students play, games that learners/students develop as projects, curriculum proposals, developing/coming up with new approaches, tools, frameworks or suggestions and others

    Critical Infrastructures You Can Trust: Where Telecommunications Fits

    Full text link
    This paper discusses two NISs: the public telephone network (PTN) and the Internet. Being themselves large and complex NISs, they not only merit study in their own right but can help us to understand some of the technical problems faced by the developers and operators of other NISs. In addition, the high cost of building a global communications infrastructure from the ground up implies that one or both of these two networks is likely to furnish communications services for most other NISs. Therefore, an understanding of the vulnerabilties of the PTN and Internet informs the assessment of the trustworthiness of other NISs. Ideas for improving the trustworthiness of the PTN and Internet are also proposed, both for the short-term (by improved use of existing technologies and procedures) and for the long-term (by identifying some areas where the state-of-the-art is inadequate and research is therefore needed). Finally, some observations are offered about Internet telephony and the use of the Internet for critical infrastructures

    Applying virtual reality to teach the software development process to novice software engineers

    Get PDF
    Software development is a complicated process that requires experienced human resources to produce successful software products. Although this process needs experience from the individuals, it is hard to provide this experience without encountering real incidents during the software development process. To fill this gap, this study proposes a Virtual Reality Based Software Development Framework (VR-SODEF), which provides an interactive virtual reality experience for individuals learning about the tasks of software development starting from requirement analysis through software testing. In the VR-SODEF, the participant takes on the role of a novice software developer being recruited into a virtual software development organisation who should work alongside five virtual characters, played by artificial intelligence. This exclusive viewpoint draws participants from the 2D separation of the classical experience and virtually into the world of the software development itself. Participants experience the intense dramatic elements created for simulation and confront the challenges of virtual software practitioners in a somewhat uncompromising virtual simulation environment. To examine the efficiency of the VR-SODEF, it was tested on 32 computing students, with results indicating that virtual reality can be an effective educational medium, especially for skills that might traditionally be acquired through experience rather than traditional classroom-based teaching

    Analyzing the Impact of Spatio-Temporal Sensor Resolution on Player Experience in Augmented Reality Games

    Get PDF
    Along with automating everyday tasks of human life, smartphones have become one of the most popular devices to play video games on due to their interactivity. Smartphones are embedded with various sensors which enhance their ability to adopt new new interaction techniques for video games. These integrated sen- sors, such as motion sensors or location sensors, make the device able to adopt new interaction techniques that enhance usability. However, despite their mobility and embedded sensor capacity, smartphones are limited in processing power and display area compared to desktop computer consoles. When it comes to evaluat- ing Player Experience (PX), players might not have as compelling an experience because the rich graphics environments that a desktop computer can provide are absent on a smartphone. A plausible alternative in this regard can be substituting the virtual game world with a real world game board, perceived through the device camera by rendering the digital artifacts over the camera view. This technology is widely known as Augmented Reality (AR). Smartphone sensors (e.g. GPS, accelerometer, gyro-meter, compass) have enhanced the capability for deploying Augmented Reality technology. AR has been applied to a large number of smartphone games including shooters, casual games, or puzzles. Because AR play environments are viewed through the camera, rendering the digital artifacts consistently and accurately is crucial because the digital characters need to move with respect to sensed orientation, then the accelerometer and gyroscope need to provide su ciently accurate and precise readings to make the game playable. In particular, determining the pose of the camera in space is vital as the appropriate angle to view the rendered digital characters are determined by the pose of the camera. This defines how well the players will be able interact with the digital game characters. Depending in the Quality of Service (QoS) of these sensors, the Player Experience (PX) may vary as the rendering of digital characters are affected by noisy sensors causing a loss of registration. Confronting such problem while developing AR games is di cult in general as it requires creating wide variety of game types, narratives, input modalities as well as user-testing. Moreover, current AR games developers do not have any specific guidelines for developing AR games, and concrete guidelines outlining the tradeoffs between QoS and PX for different genres and interaction techniques are required. My dissertation provides a complete view (a taxonomy) of the spatio-temporal sensor resolution depen- dency of the existing AR games. Four user experiments have been conducted and one experiment is proposed to validate the taxonomy and demonstrate the differential impact of sensor noise on gameplay of different genres of AR games in different aspect of PX. This analysis is performed in the context of a novel instru- mentation technology, which allows the controlled manipulation of QoS on position and orientation sensors. The experimental outcome demonstrated how the QoS of input sensor noise impacts the PX differently while playing AR game of different genre and the key elements creating this differential impact are - the input modality, narrative and game mechanics. Later, concrete guidelines are derived to regulate the sensor QoS as complete set of instructions to develop different genres or AR games

    Artificial Intelligence and Cyber Power from a Strategic Perspective

    Get PDF
    Artificial intelligence can outperform humans at narrowly defined tasks and will enable a new generation of autonomous weapon systems. Cyberspace will play a crucial role in future conflicts due to the integration of digital infrastructure in society and the expected prevalence of autonomous systems on the battlefield. AI cyber weapons create a dangerous class of persistent threats that can actively and quickly adjust tactics as they relentlessly and independently probe and attack networks

    Surveillance Planning against Smart Insurgents in Complex Terrain

    Get PDF
    This study is concerned with finding a way to solve a surveillance system allocation problem based on the need to consider intelligent insurgency that takes place in a complex geographical environment. Although this effort can be generalized to other situations, it is particularly geared towards protecting military outposts in foreign lands. The technological assets that are assumed available include stare-devices, such as tower-cameras and aerostats, as well as manned and unmanned aerial systems. Since acquiring these assets depends on the ability to control and monitor them on the target terrain, their operations on the geo-location of interest ought to be evaluated. Such an assessment has to also consider the risks associated with the environmental advantages that are accessible to a smart adversary. Failure to consider these aspects might render the forces vulnerable to surprise attacks. The problem of this study is formulated as follows: given a complex terrain and a smart adversary, what types of surveillance systems, and how many entities of each kind, does a military outpost need to adequately monitor its surrounding environment? To answer this question, an analytical framework is developed and structured as a series of problems that are solved in a comprehensive and realistic fashion. This includes digitizing the terrain into a grid of cell objects, identifying high-risk spots, generating flight tours, and assigning the appropriate surveillance system to the right route or area. Optimization tools are employed to empower the framework in enforcing constraints--such as fuel/battery endurance, flying assets at adequate altitudes, and respecting the climbing/diving rate limits of the aerial vehicles--and optimizing certain mission objectives--e.g. revisiting critical regions in a timely manner, minimizing manning requirements, and maximizing sensor-captured image quality. The framework is embedded in a software application that supports a friendly user interface, which includes the visualization of maps, tours, and related statistics. The final product is expected to support designing surveillance plans for remote military outposts and making critical decisions in a more reliable manner

    Spinoff, 1992

    Get PDF
    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer
    corecore