30,310 research outputs found

    Random projections for Bayesian regression

    Get PDF
    This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire dd-dimensional distribution is approximately preserved under random projections by reducing the number of data points from nn to kO(poly(d/ε))k\in O(\operatorname{poly}(d/\varepsilon)) in the case ndn\gg d. Under mild assumptions, we prove that evaluating a Gaussian likelihood function based on the projected data instead of the original data yields a (1+O(ε))(1+O(\varepsilon))-approximation in terms of the 2\ell_2 Wasserstein distance. Our main result shows that the posterior distribution of Bayesian linear regression is approximated up to a small error depending on only an ε\varepsilon-fraction of its defining parameters. This holds when using arbitrary Gaussian priors or the degenerate case of uniform distributions over Rd\mathbb{R}^d for β\beta. Our empirical evaluations involve different simulated settings of Bayesian linear regression. Our experiments underline that the proposed method is able to recover the regression model up to small error while considerably reducing the total running time
    corecore