4,670 research outputs found

    Transductive Learning with String Kernels for Cross-Domain Text Classification

    Full text link
    For many text classification tasks, there is a major problem posed by the lack of labeled data in a target domain. Although classifiers for a target domain can be trained on labeled text data from a related source domain, the accuracy of such classifiers is usually lower in the cross-domain setting. Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as native language identification or automatic essay scoring. Moreover, classifiers based on string kernels have been found to be robust to the distribution gap between different domains. In this paper, we formally describe an algorithm composed of two simple yet effective transductive learning approaches to further improve the results of string kernels in cross-domain settings. By adapting string kernels to the test set without using the ground-truth test labels, we report significantly better accuracy rates in cross-domain English polarity classification.Comment: Accepted at ICONIP 2018. arXiv admin note: substantial text overlap with arXiv:1808.0840

    Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark

    Full text link
    Psychological research results have confirmed that people can have different emotional reactions to different visual stimuli. Several papers have been published on the problem of visual emotion analysis. In particular, attempts have been made to analyze and predict people's emotional reaction towards images. To this end, different kinds of hand-tuned features are proposed. The results reported on several carefully selected and labeled small image data sets have confirmed the promise of such features. While the recent successes of many computer vision related tasks are due to the adoption of Convolutional Neural Networks (CNNs), visual emotion analysis has not achieved the same level of success. This may be primarily due to the unavailability of confidently labeled and relatively large image data sets for visual emotion analysis. In this work, we introduce a new data set, which started from 3+ million weakly labeled images of different emotions and ended up 30 times as large as the current largest publicly available visual emotion data set. We hope that this data set encourages further research on visual emotion analysis. We also perform extensive benchmarking analyses on this large data set using the state of the art methods including CNNs.Comment: 7 pages, 7 figures, AAAI 201

    Aspect Based Sentiment Analysis using Various Supervised Classification Techniques: An Overview

    Get PDF
    The Sentiment Analysis (SA) work is concerned with identifying aspect terms and categories and categorising emotions (positive, negatively, conflict, and neutral) in ratings and reviews. When it comes to subjectivity, it's typical to divide sentences into objective phrases that include accurate information and subjective statements that include express ideas, beliefs, and perspectives on a given topic. Various existing researchers have already done a lot of work in sentiment analysis with various methods, including aspect extraction. This paper proposed a systematic literature analysis of numerous sentiment analysis using supervised and unsupervised classification techniques. We investigate a few features extraction Natural language Processing (NLP) techniques used to identify aspects of machine learning for the detection of sentiment. An extensive experiment analysis, we discuss the findings of the study, challenges of the current and define the problem statement for the future directio

    A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis

    Full text link
    [EN] In the current world we live immersed in online applications, being one of the most present of them Social Network Sites (SNSs), and different issues arise from this interaction. Therefore, there is a need for research that addresses the potential issues born from the increasing user interaction when navigating. For this reason, in this survey we explore works in the line of prevention of risks that can arise from social interaction in online environments, focusing on works using Multi-Agent System (MAS) technologies. For being able to assess what techniques are available for prevention, works in the detection of sentiment polarity and stress levels of users in SNSs will be reviewed. We review with special attention works using MAS technologies for user recommendation and guiding. Through the analysis of previous approaches on detection of the user state and risk prevention in SNSs we elaborate potential future lines of work that might lead to future applications where users can navigate and interact between each other in a more safe way.This work was funded by the project TIN2017-89156-R of the Spanish government.Aguado-Sarrió, G.; Julian Inglada, VJ.; García-Fornes, A.; Espinosa Minguet, AR. (2020). A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis. Applied Sciences. 10(19):1-29. https://doi.org/10.3390/app10196746S1291019Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2015). Developing educational materials about risks on social network sites: a design based research approach. Educational Technology Research and Development, 64(3), 459-480. doi:10.1007/s11423-015-9415-4Teens and ICT: Risks and Opportunities. Belgium: TIRO http://www.belspo.be/belspo/fedra/proj.asp?l=en&COD=TA/00/08Risks and Safety on the Internet: The Perspective of European Children: Full Findings and Policy Implications From the EU Kids Online Survey of 9–16 Year Olds and Their Parents in 25 Countries http://eprints.lse.ac.uk/33731/Vanderhoven, E., Schellens, T., & Valcke, M. (2014). Educating teens about the risks on social network sites. An intervention study in Secondary Education. Comunicar, 22(43), 123-132. doi:10.3916/c43-2014-12Christofides, E., Muise, A., & Desmarais, S. (2012). Risky Disclosures on Facebook. Journal of Adolescent Research, 27(6), 714-731. doi:10.1177/0743558411432635George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. doi:10.1002/asi.21416Shoumy, N. J., Ang, L.-M., Seng, K. P., Rahaman, D. M. M., & Zia, T. (2020). Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals. Journal of Network and Computer Applications, 149, 102447. doi:10.1016/j.jnca.2019.102447Zhang, C., Zeng, D., Li, J., Wang, F.-Y., & Zuo, W. (2009). Sentiment analysis of Chinese documents: From sentence to document level. Journal of the American Society for Information Science and Technology, 60(12), 2474-2487. doi:10.1002/asi.21206Lu, B., Ott, M., Cardie, C., & Tsou, B. K. (2011). Multi-aspect Sentiment Analysis with Topic Models. 2011 IEEE 11th International Conference on Data Mining Workshops. doi:10.1109/icdmw.2011.125Nasukawa, T., & Yi, J. (2003). Sentiment analysis. Proceedings of the international conference on Knowledge capture - K-CAP ’03. doi:10.1145/945645.945658Borth, D., Ji, R., Chen, T., Breuel, T., & Chang, S.-F. (2013). Large-scale visual sentiment ontology and detectors using adjective noun pairs. Proceedings of the 21st ACM international conference on Multimedia - MM ’13. doi:10.1145/2502081.2502282Deb, S., & Dandapat, S. (2019). Emotion Classification Using Segmentation of Vowel-Like and Non-Vowel-Like Regions. IEEE Transactions on Affective Computing, 10(3), 360-373. doi:10.1109/taffc.2017.2730187Deng, J., Zhang, Z., Marchi, E., & Schuller, B. (2013). Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. doi:10.1109/acii.2013.90Nicolaou, M. A., Gunes, H., & Pantic, M. (2011). Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in Valence-Arousal Space. IEEE Transactions on Affective Computing, 2(2), 92-105. doi:10.1109/t-affc.2011.9Hossain, M. S., Muhammad, G., Alhamid, M. F., Song, B., & Al-Mutib, K. (2016). Audio-Visual Emotion Recognition Using Big Data Towards 5G. Mobile Networks and Applications, 21(5), 753-763. doi:10.1007/s11036-016-0685-9Zhou, F., Jianxin Jiao, R., & Linsey, J. S. (2015). Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews. Journal of Mechanical Design, 137(7). doi:10.1115/1.4030159Ceci, F., Goncalves, A. L., & Weber, R. (2016). A model for sentiment analysis based on ontology and cases. IEEE Latin America Transactions, 14(11), 4560-4566. doi:10.1109/tla.2016.7795829Vizer, L. M., Zhou, L., & Sears, A. (2009). Automated stress detection using keystroke and linguistic features: An exploratory study. International Journal of Human-Computer Studies, 67(10), 870-886. doi:10.1016/j.ijhcs.2009.07.005Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. doi:10.1145/2436256.2436274Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830. doi:10.1109/tkde.2015.2485209Ji, R., Cao, D., Zhou, Y., & Chen, F. (2016). Survey of visual sentiment prediction for social media analysis. Frontiers of Computer Science, 10(4), 602-611. doi:10.1007/s11704-016-5453-2Li, L., Cao, D., Li, S., & Ji, R. (2015). Sentiment analysis of Chinese micro-blog based on multi-modal correlation model. 2015 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2015.7351718Lee, P.-M., Tsui, W.-H., & Hsiao, T.-C. (2015). The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli. PLOS ONE, 10(6), e0129056. doi:10.1371/journal.pone.0129056Matsiola, M., Dimoulas, C., Kalliris, G., & Veglis, A. A. (2018). Augmenting User Interaction Experience Through Embedded Multimodal Media Agents in Social Networks. Information Retrieval and Management, 1972-1993. doi:10.4018/978-1-5225-5191-1.ch088Rosaci, D. (2007). CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents. Information Systems, 32(6), 793-825. doi:10.1016/j.is.2006.06.003Buccafurri, F., Comi, A., Lax, G., & Rosaci, D. (2016). Experimenting with Certified Reputation in a Competitive Multi-Agent Scenario. IEEE Intelligent Systems, 31(1), 48-55. doi:10.1109/mis.2015.98Rosaci, D., & Sarnè, G. M. L. (2014). Multi-agent technology and ontologies to support personalization in B2C E-Commerce. Electronic Commerce Research and Applications, 13(1), 13-23. doi:10.1016/j.elerap.2013.07.003Singh, A., & Sharma, A. (2017). MAICBR: A Multi-agent Intelligent Content-Based Recommendation System. Lecture Notes in Networks and Systems, 399-411. doi:10.1007/978-981-10-3920-1_41Villavicencio, C., Schiaffino, S., Diaz-Pace, J. A., Monteserin, A., Demazeau, Y., & Adam, C. (2016). A MAS Approach for Group Recommendation Based on Negotiation Techniques. Lecture Notes in Computer Science, 219-231. doi:10.1007/978-3-319-39324-7_19Rincon, J. A., de la Prieta, F., Zanardini, D., Julian, V., & Carrascosa, C. (2017). Influencing over people with a social emotional model. Neurocomputing, 231, 47-54. doi:10.1016/j.neucom.2016.03.107Aguado, G., Julian, V., Garcia-Fornes, A., & Espinosa, A. (2020). A Multi-Agent System for guiding users in on-line social environments. Engineering Applications of Artificial Intelligence, 94, 103740. doi:10.1016/j.engappai.2020.103740Aguado, G., Julián, V., García-Fornes, A., & Espinosa, A. (2020). Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks. Applied Sciences, 10(11), 3754. doi:10.3390/app10113754Camara, M., Bonham-Carter, O., & Jumadinova, J. (2015). A multi-agent system with reinforcement learning agents for biomedical text mining. Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics. doi:10.1145/2808719.2812596Lombardo, G., Fornacciari, P., Mordonini, M., Tomaiuolo, M., & Poggi, A. (2019). A Multi-Agent Architecture for Data Analysis. Future Internet, 11(2), 49. doi:10.3390/fi11020049Schweitzer, F., & Garcia, D. (2010). An agent-based model of collective emotions in online communities. The European Physical Journal B, 77(4), 533-545. doi:10.1140/epjb/e2010-00292-

    Multimodal Content Analysis for Effective Advertisements on YouTube

    Full text link
    The rapid advances in e-commerce and Web 2.0 technologies have greatly increased the impact of commercial advertisements on the general public. As a key enabling technology, a multitude of recommender systems exists which analyzes user features and browsing patterns to recommend appealing advertisements to users. In this work, we seek to study the characteristics or attributes that characterize an effective advertisement and recommend a useful set of features to aid the designing and production processes of commercial advertisements. We analyze the temporal patterns from multimedia content of advertisement videos including auditory, visual and textual components, and study their individual roles and synergies in the success of an advertisement. The objective of this work is then to measure the effectiveness of an advertisement, and to recommend a useful set of features to advertisement designers to make it more successful and approachable to users. Our proposed framework employs the signal processing technique of cross modality feature learning where data streams from different components are employed to train separate neural network models and are then fused together to learn a shared representation. Subsequently, a neural network model trained on this joint feature embedding representation is utilized as a classifier to predict advertisement effectiveness. We validate our approach using subjective ratings from a dedicated user study, the sentiment strength of online viewer comments, and a viewer opinion metric of the ratio of the Likes and Views received by each advertisement from an online platform.Comment: 11 pages, 5 figures, ICDM 201

    BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19 Tweets

    Full text link
    The free flow of information has been accelerated by the rapid development of social media technology. There has been a significant social and psychological impact on the population due to the outbreak of Coronavirus disease (COVID-19). The COVID-19 pandemic is one of the current events being discussed on social media platforms. In order to safeguard societies from this pandemic, studying people's emotions on social media is crucial. As a result of their particular characteristics, sentiment analysis of texts like tweets remains challenging. Sentiment analysis is a powerful text analysis tool. It automatically detects and analyzes opinions and emotions from unstructured data. Texts from a wide range of sources are examined by a sentiment analysis tool, which extracts meaning from them, including emails, surveys, reviews, social media posts, and web articles. To evaluate sentiments, natural language processing (NLP) and machine learning techniques are used, which assign weights to entities, topics, themes, and categories in sentences or phrases. Machine learning tools learn how to detect sentiment without human intervention by examining examples of emotions in text. In a pandemic situation, analyzing social media texts to uncover sentimental trends can be very helpful in gaining a better understanding of society's needs and predicting future trends. We intend to study society's perception of the COVID-19 pandemic through social media using state-of-the-art BERT and Deep CNN models. The superiority of BERT models over other deep models in sentiment analysis is evident and can be concluded from the comparison of the various research studies mentioned in this article.Comment: 20 pages, 5 figure
    • …
    corecore