745 research outputs found

    The New Multipoint Relays Selection in OLSR using Particle Swarm Optimization

    Get PDF
    The standard optimized link state routing (OLSR) introduces an interesting concept, the multipoint relays (MPRs), to mitigate message overhead during the flooding process. This paper propose a new algorithm for MPRs selection to enhance the performance of OLSR using particle swarm optimization sigmoid increasing inertia weight (PSOSIIW). The sigmoid increasing inertia weight has significance improve the particle swarm optimization (PSO) in terms of simplicity and quick convergence towards optimum solution. The new fitness function of PSOSIIW, packet delay of each node and degree of willingness are introduced to support MPRs selection in OLSR. The throughput, packet loss and end-to-end delay of the proposed method are examined using network simulator 2 (ns2).  Overall results indicate that OLSR-PSOSIIW has shown good performance compared to the standard OLSR and OLSR-PSO, particularly for the throughput and end-to-end delay. Generally the proposed OLSR-PSOSIIW shows advantage of using PSO for optimizing routing paths in the MPRs selection algorithm

    A Comparison of Selected Modifications of the Particle Swarm Optimization Algorithm

    Get PDF
    We compare 27 modifications of the original particle swarm optimization (PSO) algorithm. The analysis evaluated nine basic PSO types, which differ according to the swarm evolution as controlled by various inertia weights and constriction factor. Each of the basic PSO modifications was analyzed using three different distributed strategies. In the first strategy, the entire swarm population is considered as one unit (OC-PSO), the second strategy periodically partitions the population into equally large complexes according to the particle’s functional value (SCE-PSO), and the final strategy periodically splits the swarm population into complexes using random permutation (SCERand-PSO). All variants are tested using 11 benchmark functions that were prepared for the special session on real-parameter optimization of CEC 2005. It was found that the best modification of the PSO algorithm is a variant with adaptive inertia weight. The best distribution strategy is SCE-PSO, which gives better results than do OC-PSO and SCERand-PSO for seven functions. The sphere function showed no significant difference between SCE-PSO and SCERand-PSO. It follows that a shuffling mechanism improves the optimization process
    • …
    corecore