1,237 research outputs found

    Assessing and generating test sets in terms of behavioural adequacy

    Get PDF
    Identifying a finite test set that adequately captures the essential behaviour of a program such that all faults are identified is a well-established problem. This is traditionally addressed with syntactic adequacy metrics (e.g. branch coverage), but these can be impractical and may be misleading even if they are satisfied. One intuitive notion of adequacy, which has been discussed in theoretical terms over the past three decades, is the idea of behavioural coverage: If it is possible to infer an accurate model of a system from its test executions, then the test set can be deemed to be adequate. Despite its intuitive basis, it has remained almost entirely in the theoretical domain because inferred models have been expected to be exact (generally an infeasible task) and have not allowed for any pragmatic interim measures of adequacy to guide test set generation. This paper presents a practical approach to incorporate behavioural coverage. Our BESTEST approach (1) enables the use of machine learning algorithms to augment standard syntactic testing approaches and (2) shows how search-based testing techniques can be applied to generate test sets with respect to this criterion. An empirical study on a selection of Java units demonstrates that test sets with higher behavioural coverage significantly outperform current baseline test criteria in terms of detected faults

    Learning Test-Mutant Relationship for Accurate Fault Localisation

    Full text link
    Context: Automated fault localisation aims to assist developers in the task of identifying the root cause of the fault by narrowing down the space of likely fault locations. Simulating variants of the faulty program called mutants, several Mutation Based Fault Localisation (MBFL) techniques have been proposed to automatically locate faults. Despite their success, existing MBFL techniques suffer from the cost of performing mutation analysis after the fault is observed. Method: To overcome this shortcoming, we propose a new MBFL technique named SIMFL (Statistical Inference for Mutation-based Fault Localisation). SIMFL localises faults based on the past results of mutation analysis that has been done on the earlier version in the project history, allowing developers to make predictions on the location of incoming faults in a just-in-time manner. Using several statistical inference methods, SIMFL models the relationship between test results of the mutants and their locations, and subsequently infers the location of the current faults. Results: The empirical study on Defects4J dataset shows that SIMFL can localise 113 faults on the first rank out of 224 faults, outperforming other MBFL techniques. Even when SIMFL is trained on the predicted kill matrix, SIMFL can still localise 95 faults on the first rank out of 194 faults. Moreover, removing redundant mutants significantly improves the localisation accuracy of SIMFL by the number of faults localised at the first rank up to 51. Conclusion: This paper proposes a new MBFL technique called SIMFL, which exploits ahead-of-time mutation analysis to localise current faults. SIMFL is not only cost-effective, as it does not need a mutation analysis after the fault is observed, but also capable of localising faults accurately.Comment: Paper accepted for publication at IST. arXiv admin note: substantial text overlap with arXiv:1902.0972

    Model based test suite minimization using metaheuristics

    Get PDF
    Software testing is one of the most widely used methods for quality assurance and fault detection purposes. However, it is one of the most expensive, tedious and time consuming activities in software development life cycle. Code-based and specification-based testing has been going on for almost four decades. Model-based testing (MBT) is a relatively new approach to software testing where the software models as opposed to other artifacts (i.e. source code) are used as primary source of test cases. Models are simplified representation of a software system and are cheaper to execute than the original or deployed system. The main objective of the research presented in this thesis is the development of a framework for improving the efficiency and effectiveness of test suites generated from UML models. It focuses on three activities: transformation of Activity Diagram (AD) model into Colored Petri Net (CPN) model, generation and evaluation of AD based test suite and optimization of AD based test suite. Unified Modeling Language (UML) is a de facto standard for software system analysis and design. UML models can be categorized into structural and behavioral models. AD is a behavioral type of UML model and since major revision in UML version 2.x it has a new Petri Nets like semantics. It has wide application scope including embedded, workflow and web-service systems. For this reason this thesis concentrates on AD models. Informal semantics of UML generally and AD specially is a major challenge in the development of UML based verification and validation tools. One solution to this challenge is transforming a UML model into an executable formal model. In the thesis, a three step transformation methodology is proposed for resolving ambiguities in an AD model and then transforming it into a CPN representation which is a well known formal language with extensive tool support. Test case generation is one of the most critical and labor intensive activities in testing processes. The flow oriented semantic of AD suits modeling both sequential and concurrent systems. The thesis presented a novel technique to generate test cases from AD using a stochastic algorithm. In order to determine if the generated test suite is adequate, two test suite adequacy analysis techniques based on structural coverage and mutation have been proposed. In terms of structural coverage, two separate coverage criteria are also proposed to evaluate the adequacy of the test suite from both perspectives, sequential and concurrent. Mutation analysis is a fault-based technique to determine if the test suite is adequate for detecting particular types of faults. Four categories of mutation operators are defined to seed specific faults into the mutant model. Another focus of thesis is to improve the test suite efficiency without compromising its effectiveness. One way of achieving this is identifying and removing the redundant test cases. It has been shown that the test suite minimization by removing redundant test cases is a combinatorial optimization problem. An evolutionary computation based test suite minimization technique is developed to address the test suite minimization problem and its performance is empirically compared with other well known heuristic algorithms. Additionally, statistical analysis is performed to characterize the fitness landscape of test suite minimization problems. The proposed test suite minimization solution is extended to include multi-objective minimization. As the redundancy is contextual, different criteria and their combination can significantly change the solution test suite. Therefore, the last part of the thesis describes an investigation into multi-objective test suite minimization and optimization algorithms. The proposed framework is demonstrated and evaluated using prototype tools and case study models. Empirical results have shown that the techniques developed within the framework are effective in model based test suite generation and optimizatio

    Guiding Quality Assurance Through Context Aware Learning

    Get PDF
    Software Testing is a quality control activity that, in addition to finding flaws or bugs, provides confidence in the software’s correctness. The quality of the developed software depends on the strength of its test suite. Mutation Testing has shown that it effectively guides in improving the test suite’s strength. Mutation is a test adequacy criterion in which test requirements are represented by mutants. Mutants are slight syntactic modifications of the original program that aim to introduce semantic deviations (from the original program) necessitating the testers to design tests to kill these mutants, i.e., to distinguish the observable behavior between a mutant and the original program. This process of designing tests to kill a mutant is iteratively performed for the entire mutant set, which results in augmenting the test suite, hence improving its strength. Although mutation testing is empirically validated, a key issue is that its application is expensive due to the large number of low-utility mutants that it introduces. Some mutants cannot be even killed as they are functionally equivalent to the original program. To reduce the application cost, it is imperative to limit the number of mutants to those that are actually useful. Since it requires manual analysis and test executions to identify such mutants, there is a lack of an effective solution to the problem. Hence, it remains unclear how to mutate and test a code efficiently. On the other hand, with the advancement in deep learning, several works in the literature recently focused on using it on source code to automate many nontrivial tasks including bug fixing, producing code comments, code completion, and program repair. The increasing utilization of deep learning is due to a combination of factors. The first is the vast availability of data to learn from, specifically source code in open-source repositories. The second is the availability of inexpensive hardware able to efficiently run deep learning infrastructures. The third and the most compelling is its ability to automatically learn the categorization of data by learning the code context through its hidden layer architecture, making it especially proficient in identifying features. Thus, we explore the possibility of employing deep learning to identify only useful mutants, in order to achieve a good trade-off between the invested effort and test effectiveness. Hence, as our first contribution, this dissertation proposes Cerebro, a deep learning approach to statically select subsuming mutants based on the mutants’ surrounding code context. As subsuming mutants reside at the top of the subsumption hierarchy, test cases designed to only kill this minimal subset of mutants kill all the remaining mutants. Our evaluation of Cerebro demonstrates that it preserves the mutation testing benefits while limiting the application cost, i.e., reducing all cost factors such as equivalent mutants, mutant executions, and the mutants requiring analysis. Apart from improving test suite strength, mutation testing has been proven useful in inferring software specifications. Software specifications aim at describing the software’s intended behavior and can be used to distinguish correct from incorrect software behaviors. Specification inference techniques aim at inferring assertions by generating and filtering candidate assertions through dynamic test executions and mutation testing. Due to the introduction of a large number of mutants during mutation testing such techniques are also computationally expensive, hence establishing a need for the selection of mutants that fit best for assertion inference. We refer to such mutants as Assertion Inferring Mutants. In our analysis, we find that the assertion inferring mutants are significantly different from the subsuming mutants. Thus, we explored the employability of deep learning to identify Assertion Inferring Mutants. Hence, as our second contribution, this dissertation proposes Seeker, a deep learning approach to statically select Assertion Inferring Mutants. Our evaluation demonstrates that Seeker enables an assertion inference capability comparable to the full mutation analysis while significantly limiting the execution cost. In addition to testing software in general, a few works in the literature attempt to employ mutation testing to tackle security-related issues, due to the fault-based nature of the technique. These works propose mutation operators to convert non-vulnerable code to vulnerable by mimicking common security bugs. However, these pattern-based approaches have two major limitations. Firstly, the design of security-specific mutation operators is not trivial. It requires manual analysis and comprehension of the vulnerability classes. Secondly, these mutation operators can alter the program semantics in a manner that is not convincing for developers and is perceived as unrealistic, thereby hindering the usability of the method. On the other hand, with the release of powerful language models trained on large code corpus, e.g. CodeBERT, a new family of mutation testing tools has arisen with the promise to generate natural mutants. We study the extent to which the mutants produced by language models can semantically mimic the behavior of vulnerabilities aka Vulnerability-mimicking Mutants. Designed test cases failed by these mutants will also tackle mimicked vulnerabilities. In our analysis, we found that a very small subset of mutants is vulnerability-mimicking. Though, this set mimics more than half of the vulnerabilities in our dataset. Due to the absence of any defined features to identify vulnerability-mimicking mutants, as our third contribution, this dissertation introduces Mystique, a deep learning approach that automatically extracts features to identify vulnerability-mimicking mutants. Despite the scarcity, Mystique predicts vulnerability-mimicking mutants with a high prediction performance, demonstrating that their features can be automatically learned by deep learning models to statically predict these without the need of investing any effort in defining features. Since our vulnerability-mimicking mutants cannot mimic all the vulnerabilities, we perceive that these mutants are not a complete representation of all the vulnerabilities and there exists a need for actual vulnerability prediction approaches. Although there exist many such approaches in the literature, their performance is limited due to a few factors. Firstly, vulnerabilities are fewer in comparison to software bugs, limiting the information one can learn from, which affects the prediction performance. Secondly, the existing approaches learn on both, vulnerable, and supposedly non-vulnerable components. This introduces an unavoidable noise in training data, i.e., components with no reported vulnerability are considered non-vulnerable during training, and hence, results in existing approaches performing poorly. We employed deep learning to automatically capture features related to vulnerabilities and explored if we can avoid learning on supposedly non-vulnerable components. Hence, as our final contribution, this dissertation proposes TROVON, a deep learning approach that learns only on components known to be vulnerable, thereby making no assumptions and bypassing the key problem faced by previous techniques. Our comparison of TROVON with existing techniques on security-critical open-source systems with historical vulnerabilities reported in the National Vulnerability Database (NVD) demonstrates that its prediction capability significantly outperforms the existing techniques
    • …
    corecore