37,589 research outputs found

    Empirical software engineering experts on the use of students and professionals in experiments

    Get PDF
    [Context] Controlled experiments are an important empirical method to generate and validate theories. Many software engineering experiments are conducted with students. It is often claimed that the use of students as participants in experiments comes at the cost of low external validity while using professionals does not. [Objective] We believe a deeper understanding is needed on the external validity of software engineering experiments conducted with students or with professionals. We aim to gain insight about the pros and cons of using students and professionals in experiments. [Method] We performed an unconventional, focus group approach and a follow-up survey. First, during a session at ISERN 2014, 65 empirical researchers, including the seven authors, argued and discussed the use of students in experiments with an open mind. Afterwards, we revisited the topic and elicited experts' opinions to foster discussions. Then we derived 14 statements and asked the ISERN attendees excluding the authors, to provide their level of agreement with the statements. Finally, we analyzed the researchers' opinions and used the findings to further discuss the statements. [Results] Our survey results showed that, in general, the respondents disagreed with us about the drawbacks of professionals. We, on the contrary, strongly believe that no population (students, professionals, or others) can be deemed better than another in absolute terms. [Conclusion] Using students as participants remains a valid simplification of reality needed in laboratory contexts. It is an effective way to advance software engineering theories and technologies but, like any other aspect of study settings, should be carefully considered during the design, execution, interpretation, and reporting of an experiment. The key is to understand which developer population portion is being represented by the participants in an experiment. Thus, a proposal for describing experimental participants is put forward.Peer reviewe

    Inferencing into the void: problems with implicit populations Comments on `Empirical software engineering experts on the use of students and professionals in experiments'

    Get PDF
    I welcome the contribution from Falessi et al. [1] hereafter referred to as F++ , and the ensuing debate. Experimentation is an important tool within empirical software engineering, so how we select participants is clearly a relevant question. Moreover as F++ point out, the question is considerably more nuanced than the simple dichotomy it might appear to be at first sight. This commentary is structured as follows. In Section 2 I briefly summarise the arguments of F++ and comment on their approach. Next, in Section 3, I take a step back to consider the nature of representativeness in inferential arguments and the need for careful definition. Then I give three examples of using different types of participant to consider impact. I conclude by arguing, largely in agreement with F++, that the question of whether student participants are representative or not depends on the target population. However, we need to give careful consideration to defining that population and, in particular, not to overlook the representativeness of tasks and environment. This is facilitated by explicit description of the target populations.Comment: This is a commentary on the article in Empirical Software Engineering entitled `Empirical software engineering experts on the use of students and professionals in experiments' by Falessi et al. It will form part of an accepted an article for EMSE (Dec 2018) comprising commentary and a response from the original author

    The Effect of Security Education and Expertise on Security Assessments: the Case of Software Vulnerabilities

    Get PDF
    In spite of the growing importance of software security and the industry demand for more cyber security expertise in the workforce, the effect of security education and experience on the ability to assess complex software security problems has only been recently investigated. As proxy for the full range of software security skills, we considered the problem of assessing the severity of software vulnerabilities by means of a structured analysis methodology widely used in industry (i.e. the Common Vulnerability Scoring System (\CVSS) v3), and designed a study to compare how accurately individuals with background in information technology but different professional experience and education in cyber security are able to assess the severity of software vulnerabilities. Our results provide some structural insights into the complex relationship between education or experience of assessors and the quality of their assessments. In particular we find that individual characteristics matter more than professional experience or formal education; apparently it is the \emph{combination} of skills that one owns (including the actual knowledge of the system under study), rather than the specialization or the years of experience, to influence more the assessment quality. Similarly, we find that the overall advantage given by professional expertise significantly depends on the composition of the individual security skills as well as on the available information.Comment: Presented at the Workshop on the Economics of Information Security (WEIS 2018), Innsbruck, Austria, June 201

    Links between the personalities, styles and performance in computer programming

    Get PDF
    There are repetitive patterns in strategies of manipulating source code. For example, modifying source code before acquiring knowledge of how a code works is a depth-first style and reading and understanding before modifying source code is a breadth-first style. To the extent we know there is no study on the influence of personality on them. The objective of this study is to understand the influence of personality on programming styles. We did a correlational study with 65 programmers at the University of Stuttgart. Academic achievement, programming experience, attitude towards programming and five personality factors were measured via self-assessed survey. The programming styles were asked in the survey or mined from the software repositories. Performance in programming was composed of bug-proneness of programmers which was mined from software repositories, the grades they got in a software project course and their estimate of their own programming ability. We did statistical analysis and found that Openness to Experience has a positive association with breadth-first style and Conscientiousness has a positive association with depth-first style. We also found that in addition to having more programming experience and better academic achievement, the styles of working depth-first and saving coarse-grained revisions improve performance in programming.Comment: 27 pages, 6 figure

    A Family of Experiments on Test-Driven Development

    Full text link
    Context: Test-driven development (TDD) is an agile software development approach that has been widely claimed to improve software quality. However, the extent to which TDD improves quality appears to be largely dependent upon the characteristics of the study in which it is evaluated (e.g., the research method, participant type, programming environment, etc.). The particularities of each study make the aggregation of results untenable. Objectives: The goal of this paper is to: increase the accuracy and generalizability of the results achieved in isolated experiments on TDD, provide joint conclusions on the performance of TDD across different industrial and academic settings, and assess the extent to which the characteristics of the experiments affect the quality-related performance of TDD. Method: We conduct a family of 12 experiments on TDD in academia and industry. We aggregate their results by means of meta-analysis. We perform exploratory analyses to identify variables impacting the quality-related performance of TDD. Results: TDD novices achieve a slightly higher code quality with iterative test-last development (i.e., ITL, the reverse approach of TDD) than with TDD. The task being developed largely determines quality. The programming environment, the order in which TDD and ITL are applied, or the learning effects from one development approach to another do not appear to affect quality. The quality-related performance of professionals using TDD drops more than for students. We hypothesize that this may be due to their being more resistant to change and potentially less motivated than students. Conclusion: Previous studies seem to provide conflicting results on TDD performance (i.e., positive vs. negative, respectively). We hypothesize that these conflicting results may be due to different study durations, experiment participants being unfamiliar with the TDD process..

    Ethical Issues in Empirical Studies of Software Engineering

    Get PDF
    The popularity of empirical methods in software engineering research is on the rise. Surveys, experiments, metrics, case studies, and field studies are examples of empirical methods used to investigate both software engineering processes and products. The increased application of empirical methods has also brought about an increase in discussions about adapting these methods to the peculiarities of software engineering. In contrast, the ethical issues raised by empirical methods have received little, if any, attention in the software engineering literature. This article is intended to introduce the ethical issues raised by empirical research to the software engineering research community, and to stimulate discussion of how best to deal with these ethical issues. Through a review of the ethical codes of several fields that commonly employ humans and artifacts as research subjects, we have identified major ethical issues relevant to empirical studies of software engineering. These issues are illustrated with real empirical studies of software engineering

    An empirical study evaluating depth of inheritance on the maintainability of object-oriented software

    Get PDF
    This empirical research was undertaken as part of a multi-method programme of research to investigate unsupported claims made of object-oriented technology. A series of subject-based laboratory experiments, including an internal replication, tested the effect of inheritance depth on the maintainability of object-oriented software. Subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of three levels of inheritance depth and equivalent object-based software with no inheritance. This was then replicated with more experienced subjects. In a second experiment of similar design, subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of five levels of inheritance depth and the equivalent object-based software. The collected data showed that subjects maintaining object-oriented software with three levels of inheritance depth performed the maintenance tasks significantly quicker than those maintaining equivalent object-based software with no inheritance. In contrast, subjects maintaining the object-oriented software with five levels of inheritance depth took longer, on average, than the subjects maintaining the equivalent object-based software (although statistical significance was not obtained). Subjects' source code solutions and debriefing questionnaires provided some evidence suggesting subjects began to experience diffculties with the deeper inheritance hierarchy. It is not at all obvious that object-oriented software is going to be more maintainable in the long run. These findings are sufficiently important that attempts to verify the results should be made by independent researchers

    How Advanced Change Patterns Impact the Process of Process Modeling

    Get PDF
    Process model quality has been an area of considerable research efforts. In this context, correctness-by-construction as enabled by change patterns provides promising perspectives. While the process of process modeling (PPM) based on change primitives has been thoroughly investigated, only little is known about the PPM based on change patterns. In particular, it is unclear what set of change patterns should be provided and how the available change pattern set impacts the PPM. To obtain a better understanding of the latter as well as the (subjective) perceptions of process modelers, the arising challenges, and the pros and cons of different change pattern sets we conduct a controlled experiment. Our results indicate that process modelers face similar challenges irrespective of the used change pattern set (core pattern set versus extended pattern set, which adds two advanced change patterns to the core patterns set). An extended change pattern set, however, is perceived as more difficult to use, yielding a higher mental effort. Moreover, our results indicate that more advanced patterns were only used to a limited extent and frequently applied incorrectly, thus, lowering the potential benefits of an extended pattern set
    corecore