10,522 research outputs found

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    Analyzing Stop-and-Go Waves by Experiment and Modeling

    Full text link
    The main topic of this paper is the analysis and modeling of stop-and-go waves, observable in experiments of single lane movement with pedestrians. The velocity density relation using measurements on a 'microscopic' scale shows the coexistence of two phases at one density. These data are used to calibrate and verify a spatially continuous model. Several criteria are chosen that a model has to satisfy: firstly we investigated the fundamental diagram (velocity versus density) using different measurement methods. Furthermore the trajectories are compared to the occurrence of stop-and-go waves qualitatively. Finally we checked the distribution of the velocities at fixed density against the experimental one. The adaptive velocity model introduced satisfies these criteria well.Comment: Fifth International Conference on Pedestrian and Evacuation Dynamics, March 8-10, 2010, National Institute of Standards and Technology, Gaithersburg, MD US

    Quantitative validation of PEDFLOW for description of unidirectional pedestrian dynamics

    Get PDF
    The results of a systematic quantitative validation of PEDFLOW based on the experimental data from FZJ are presented. Unidirectional flow experiments, totaling 28 different combinations with varying entry, corridor and exit widths, were considered. The condition imposed on PEDFLOW was that all the cases should be run with the same input parameters. The exit times and fundamental diagrams for the measuring region were evaluated and compared. This validation process led to modifications and enhancements of the model underlying PEDFLOW. The preliminary conclusions indicate that the results agree well for densities smaller than 3 m-2 and a good agreement is observed even at high densities for the corridors with bcor = 2.4 m, and bcor = 3.0 m. For densities between 1 and 2 m-2 the specific flow and velocities are underpredicted by PEDFLOW.Comment: 6 pages, 3 figures, 1 Table, conference PED201

    Steady State of Pedestrian Flow in Bottleneck Experiments

    Full text link
    Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. In this work, a feasible algorithm - Cumulative Sum Control Chart - is proposed and improved to automatically detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with previous manually selected ones, the modified algorithm gives more reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The study about pedestrian flow shows that the difference between the flows in all states and in steady state mainly depends on the ratio of pedestrian number to bottleneck width. When the ratio is higher than a critical value (approximately 115 persons/m), the flow in all states is almost identical with the flow in steady state. Thus we have more possibilities to compare the flows from different experiments, especially when the detection of steady states is difficult.Comment: 19 pages, 7 figure

    Toward a Mathematical Theory of Behavioral-Social Dynamics for Pedestrian Crowds

    Full text link
    This paper presents a new approach to behavioral-social dynamics of pedestrian crowds by suitable development of methods of the kinetic theory. It is shown how heterogeneous individual behaviors can modify the collective dynamics, as well as how local unusual behaviors can propagate in the crowd. The main feature of this approach is a detailed analysis of the interactions between dynamics and social behaviors.Comment: 22 pages, 5 figure

    Inflow process of pedestrians to a confined space

    Get PDF
    To better design safe and comfortable urban spaces, understanding the nature of human crowd movement is important. However, precise interactions among pedestrians are difficult to measure in the presence of their complex decision-making processes and many related factors. While extensive studies on pedestrian flow through bottlenecks and corridors have been conducted, the dominant mode of interaction in these scenarios may not be relevant in different scenarios. Here, we attempt to decipher the factors that affect human reactions to other individuals from a different perspective. We conducted experiments employing the inflow process in which pedestrians successively enter a confined area (like an elevator) and look for a temporary position. In this process, pedestrians have a wider range of options regarding their motion than in the classical scenarios; therefore, other factors might become relevant. The preference of location is visualized by pedestrian density profiles obtained from recorded pedestrian trajectories. Non-trivial patterns of space acquisition, e.g., an apparent preference for positions near corners, were observed. This indicates the relevance of psychological and anticipative factors beyond the private sphere, which have not been deeply discussed so far in the literature on pedestrian dynamics. From the results, four major factors, which we call flow avoidance, distance cost, angle cost, and boundary preference, were suggested. We confirmed that a description of decision-making based on these factors can give a rise to realistic preference patterns, using a simple mathematical model. Our findings provide new perspectives and a baseline for considering the optimization of design and safety in crowded public areas and public transport carriers.Comment: 23 pages, 6 figure

    Two dimensional outflows for cellular automata with shuffle updates

    Full text link
    In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle updates are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.Comment: 20 pages, 5 figures. v2: 16 pages, 5 figures; changed the title, abstract and structure of the paper. v3: minor change
    corecore