830 research outputs found

    Empirical quantizer design in the presence of source noise or channel noise

    Full text link

    Interference Coordination via Power Domain Channel Estimation

    Full text link
    A novel technique is proposed which enables each transmitter to acquire global channel state information (CSI) from the sole knowledge of individual received signal power measurements, which makes dedicated feedback or inter-transmitter signaling channels unnecessary. To make this possible, we resort to a completely new technique whose key idea is to exploit the transmit power levels as symbols to embed information and the observed interference as a communication channel the transmitters can use to exchange coordination information. Although the used technique allows any kind of {low-rate} information to be exchanged among the transmitters, the focus here is to exchange local CSI. The proposed procedure also comprises a phase which allows local CSI to be estimated. Once an estimate of global CSI is acquired by the transmitters, it can be used to optimize any utility function which depends on it. While algorithms which use the same type of measurements such as the iterative water-filling algorithm (IWFA) implement the sequential best-response dynamics (BRD) applied to individual utilities, here, thanks to the availability of global CSI, the BRD can be applied to the sum-utility. Extensive numerical results show that significant gains can be obtained and, this, by requiring no additional online signaling

    High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes

    Full text link
    This paper investigates the effect of quantization on the performance of the Neyman-Pearson test. It is assumed that a sensing unit observes samples of a correlated stationary ergodic multivariate process. Each sample is passed through an N-point quantizer and transmitted to a decision device which performs a binary hypothesis test. For any false alarm level, it is shown that the miss probability of the Neyman-Pearson test converges to zero exponentially as the number of samples tends to infinity, assuming that the observed process satisfies certain mixing conditions. The main contribution of this paper is to provide a compact closed-form expression of the error exponent in the high-rate regime i.e., when the number N of quantization levels tends to infinity, generalizing previous results of Gupta and Hero to the case of non-independent observations. If d represents the dimension of one sample, it is proved that the error exponent converges at rate N^{2/d} to the one obtained in the absence of quantization. As an application, relevant high-rate quantization strategies which lead to a large error exponent are determined. Numerical results indicate that the proposed quantization rule can yield better performance than existing ones in terms of detection error.Comment: 47 pages, 7 figures, 1 table. To appear in the IEEE Transactions on Information Theor

    Hardware-Limited Task-Based Quantization

    Get PDF
    Quantization plays a critical role in digital signal processing systems. Quantizers are typically designed to obtain an accurate digital representation of the input signal, operating independently of the system task, and are commonly implemented using serial scalar analog-to-digital converters (ADCs). In this work, we study hardware-limited task-based quantization, where a system utilizing a serial scalar ADC is designed to provide a suitable representation in order to allow the recovery of a parameter vector underlying the input signal. We propose hardware-limited task-based quantization systems for a fixed and finite quantization resolution, and characterize their achievable distortion. We then apply the analysis to the practical setups of channel estimation and eigen-spectrum recovery from quantized measurements. Our results illustrate that properly designed hardware-limited systems can approach the optimal performance achievable with vector quantizers, and that by taking the underlying task into account, the quantization error can be made negligible with a relatively small number of bits
    • …
    corecore