1,808 research outputs found

    Approximate Bayesian inference in semiparametric copula models

    Full text link
    We describe a simple method for making inference on a functional of a multivariate distribution. The method is based on a copula representation of the multivariate distribution and it is based on the properties of an Approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighed in terms of their empirical likelihood. This method is particularly useful when the "true" likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.Comment: 27 pages, 18 figure

    Resampling Procedures with Empirical Beta Copulas

    Full text link
    The empirical beta copula is a simple but effective smoother of the empirical copula. Because it is a genuine copula, from which, moreover, it is particularly easy to sample, it is reasonable to expect that resampling procedures based on the empirical beta copula are expedient and accurate. In this paper, after reviewing the literature on some bootstrap approximations for the empirical copula process, we first show the asymptotic equivalence of several bootstrapped processes related to the empirical copula and empirical beta copula. Then we investigate the finite-sample properties of resampling schemes based on the empirical (beta) copula by Monte Carlo simulation. More specifically, we consider interval estimation for some functionals such as rank correlation coefficients and dependence parameters of several well-known families of copulas, constructing confidence intervals by several methods and comparing their accuracy and efficiency. We also compute the actual size and power of symmetry tests based on several resampling schemes for the empirical copula and empirical beta copula.Comment: 22 pages, 8 table

    Multiple Imputation Using Gaussian Copulas

    Get PDF
    Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use method for generating multiple imputations using a Gaussian copula. The Gaussian copula for multiple imputation (Hoff, 2007) allows scholars to attain estimation results that have good coverage and small bias. The use of copulas to model the dependence among variables will enable researchers to construct valid joint distributions of the data, even without knowledge of the actual underlying marginal distributions. Multiple imputations are then generated by drawing observations from the resulting posterior joint distribution and replacing the missing values. Using simulated and observational data from published social science research, we compare imputation via Gaussian copulas with two other widely used imputation methods: MICE and Amelia II. Our results suggest that the Gaussian copula approach has a slightly smaller bias, higher coverage rates, and narrower confidence intervals compared to the other methods. This is especially true when the variables with missing data are not normally distributed. These results, combined with theoretical guarantees and ease-of-use suggest that the approach examined provides an attractive alternative for applied researchers undertaking multiple imputations

    Multiplier bootstrap of tail copulas with applications

    Full text link
    For the problem of estimating lower tail and upper tail copulas, we propose two bootstrap procedures for approximating the distribution of the corresponding empirical tail copulas. The first method uses a multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives of the tail copula. The second method avoids this estimation problem and uses multipliers in the two-dimensional empirical distribution function and in the estimates of the marginal distributions. For both multiplier bootstrap procedures, we prove consistency. For these investigations, we demonstrate that the common assumption of the existence of continuous partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail copula corresponding to tail independence is the only tail copula with this property. Moreover, we are able to solve this problem and prove weak convergence of the empirical tail copula process under nonrestrictive smoothness assumptions that are satisfied for many commonly used models. These results are applied in several statistical problems, including minimum distance estimation and goodness-of-fit testing.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ425 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore