34 research outputs found

    The Impact of Social Computing on the EU Information Society and Economy

    Get PDF
    This report provides a systematic empirical assessment of the creation, use and adoption of specific social computing applications and its impact on ICT/media industries, personal identity, social inclusion, education and training, healthcare and public health, and government services and public governance.JRC.J.4-Information Societ

    Gamification elements in tracking applications

    Get PDF
    Mobile phones are highly effective to develop mHealth applications. The mHealth is the use of mobile communication for health services. There are various types of mHealth applications, one of which is the tracking application. The main feature of tracking applications is the process of tracking data. Users of tracking applications need to track data on a mobile phone repeatedly which can be monotonous. To solve such issue, gamification, the use of game elements in non-game context, can be included in tracking applications to convert a repetitive task into a more engaging one. A prototype of gamified tracking application has been developed to examine the effectiveness of gamification in mHealth tracking applications. The prototype includes three gamification elements, which are avatar, story and feedback. Two usability systems have been adapted to support the analysis of the usability of the prototype which are Mobile Application Rating Scale (MARS) and Jakob Nielsen's heuristics. The MARS system contains twenty-three items and four of the items have been adapted to analyze and Jakob Nielsen's heuristics contains ten heuristics and three of which have been adapted. Three interviews were conducted to validate the usability of the prototype. The result of the research shows that the MARS total score for the prototype was three and they have little impact on the application’s usability

    Prijedlog ontološki utemeljenog metodološkog okvira za razvoj više-platformskih mobilnih aplikacija

    Get PDF
    Software development teams are faced with the lack of interoperability during the development of mobile applications for two or more target platforms. The development for second and every other platform means a new project with a need to repeat almost all the phases defined by the chosen methodology but with a narrow possibility of reuse of the already defined artifacts. The existing efforts of professional and scientific community to solve this problem have a similar approach (code once, run everywhere) with similar advantages and drawbacks. Thus, this dissertation aims to propose a different solution and is concerned with: (1) analyzing the methodologies suitable for mobile applications development, (2) observing the implementation of prototype application in order to define artifacts that are created during the development process for two target platforms, (3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition as a base for methodological interoperability. The results of a systematic literature review performed on 6761 primary studies, show that current state-of-the-art literature brings only 22 development methodologies and 7 development approaches which can be identified as eligible for multi-platform mobile applications development. Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and used in the observed development processes for Android and Windows Phone platforms. Total of 71 artifacts were identified and the artifacts reusability level when developing for second target platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically described into a single ontological description comprising 213 classes, 14 object properties and 2213 axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and valid, flexible, reusable and extensible we created the basis for development of an information system to guide the development teams in a more efficient and interoperable process of multiplatform mobile applications development.Razvojni timovi susreću se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili više mobilnih platformi. Razvoj aplikacije za drugu i svaku sljedeću platformu znači novi projekt u kojem je potrebno ponovno provesti većinu faza definiranih odabranom metodikom razvoja, pri čemu se kreirani artefakti teško ili uopće ponovno ne koriste. Napori profesionalne i znanstvene zajednice za rješenjem ovog problema imaju sličan pristup (kodiraj jednom, koristi svugdje), slične prednosti, ali i zajedničke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov način i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije za dvije ciljane platforme, (3) semantičkim opisivanjem definiranih artefakata i njihovih značenja, te (4) definiranjem jedinstvene ontološke definicije kao osnove za metodološku interoperabilnost. Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj više-platformskih mobilnih aplikacija. Između identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju vođen testiranjem, koji su korišteni pri implementaciji prototipnog rješenja za Android i Windows Phone platformu. Ukupno je identificiran 71 artefakt pri čemu je ponovna iskoristivost artefakata pri razvoju za drugu platformu bila 66.00%. U posljednjoj su fazi istraživanja artefakti semantički opisani u zajedničku ontološku definiciju koja u konačnici sadrži 213 klasa, 14 objektnih svojstava i 2213 aksioma definiranih pomodu ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana, fleksibilna, ponovno iskoristiva i nadogradiva, čime je kreirana osnova za razvoj informacijskog sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja više-platformskih mobilnih aplikacija

    Prijedlog ontološki utemeljenog metodološkog okvira za razvoj više-platformskih mobilnih aplikacija

    Get PDF
    Software development teams are faced with the lack of interoperability during the development of mobile applications for two or more target platforms. The development for second and every other platform means a new project with a need to repeat almost all the phases defined by the chosen methodology but with a narrow possibility of reuse of the already defined artifacts. The existing efforts of professional and scientific community to solve this problem have a similar approach (code once, run everywhere) with similar advantages and drawbacks. Thus, this dissertation aims to propose a different solution and is concerned with: (1) analyzing the methodologies suitable for mobile applications development, (2) observing the implementation of prototype application in order to define artifacts that are created during the development process for two target platforms, (3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition as a base for methodological interoperability. The results of a systematic literature review performed on 6761 primary studies, show that current state-of-the-art literature brings only 22 development methodologies and 7 development approaches which can be identified as eligible for multi-platform mobile applications development. Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and used in the observed development processes for Android and Windows Phone platforms. Total of 71 artifacts were identified and the artifacts reusability level when developing for second target platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically described into a single ontological description comprising 213 classes, 14 object properties and 2213 axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and valid, flexible, reusable and extensible we created the basis for development of an information system to guide the development teams in a more efficient and interoperable process of multiplatform mobile applications development.Razvojni timovi susreću se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili više mobilnih platformi. Razvoj aplikacije za drugu i svaku sljedeću platformu znači novi projekt u kojem je potrebno ponovno provesti većinu faza definiranih odabranom metodikom razvoja, pri čemu se kreirani artefakti teško ili uopće ponovno ne koriste. Napori profesionalne i znanstvene zajednice za rješenjem ovog problema imaju sličan pristup (kodiraj jednom, koristi svugdje), slične prednosti, ali i zajedničke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov način i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije za dvije ciljane platforme, (3) semantičkim opisivanjem definiranih artefakata i njihovih značenja, te (4) definiranjem jedinstvene ontološke definicije kao osnove za metodološku interoperabilnost. Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj više-platformskih mobilnih aplikacija. Između identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju vođen testiranjem, koji su korišteni pri implementaciji prototipnog rješenja za Android i Windows Phone platformu. Ukupno je identificiran 71 artefakt pri čemu je ponovna iskoristivost artefakata pri razvoju za drugu platformu bila 66.00%. U posljednjoj su fazi istraživanja artefakti semantički opisani u zajedničku ontološku definiciju koja u konačnici sadrži 213 klasa, 14 objektnih svojstava i 2213 aksioma definiranih pomodu ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana, fleksibilna, ponovno iskoristiva i nadogradiva, čime je kreirana osnova za razvoj informacijskog sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja više-platformskih mobilnih aplikacija

    Prijedlog ontološki utemeljenog metodološkog okvira za razvoj više-platformskih mobilnih aplikacija

    Get PDF
    Software development teams are faced with the lack of interoperability during the development of mobile applications for two or more target platforms. The development for second and every other platform means a new project with a need to repeat almost all the phases defined by the chosen methodology but with a narrow possibility of reuse of the already defined artifacts. The existing efforts of professional and scientific community to solve this problem have a similar approach (code once, run everywhere) with similar advantages and drawbacks. Thus, this dissertation aims to propose a different solution and is concerned with: (1) analyzing the methodologies suitable for mobile applications development, (2) observing the implementation of prototype application in order to define artifacts that are created during the development process for two target platforms, (3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition as a base for methodological interoperability. The results of a systematic literature review performed on 6761 primary studies, show that current state-of-the-art literature brings only 22 development methodologies and 7 development approaches which can be identified as eligible for multi-platform mobile applications development. Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and used in the observed development processes for Android and Windows Phone platforms. Total of 71 artifacts were identified and the artifacts reusability level when developing for second target platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically described into a single ontological description comprising 213 classes, 14 object properties and 2213 axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and valid, flexible, reusable and extensible we created the basis for development of an information system to guide the development teams in a more efficient and interoperable process of multiplatform mobile applications development.Razvojni timovi susreću se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili više mobilnih platformi. Razvoj aplikacije za drugu i svaku sljedeću platformu znači novi projekt u kojem je potrebno ponovno provesti većinu faza definiranih odabranom metodikom razvoja, pri čemu se kreirani artefakti teško ili uopće ponovno ne koriste. Napori profesionalne i znanstvene zajednice za rješenjem ovog problema imaju sličan pristup (kodiraj jednom, koristi svugdje), slične prednosti, ali i zajedničke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov način i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije za dvije ciljane platforme, (3) semantičkim opisivanjem definiranih artefakata i njihovih značenja, te (4) definiranjem jedinstvene ontološke definicije kao osnove za metodološku interoperabilnost. Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj više-platformskih mobilnih aplikacija. Između identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju vođen testiranjem, koji su korišteni pri implementaciji prototipnog rješenja za Android i Windows Phone platformu. Ukupno je identificiran 71 artefakt pri čemu je ponovna iskoristivost artefakata pri razvoju za drugu platformu bila 66.00%. U posljednjoj su fazi istraživanja artefakti semantički opisani u zajedničku ontološku definiciju koja u konačnici sadrži 213 klasa, 14 objektnih svojstava i 2213 aksioma definiranih pomodu ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana, fleksibilna, ponovno iskoristiva i nadogradiva, čime je kreirana osnova za razvoj informacijskog sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja više-platformskih mobilnih aplikacija

    The few touch digital diabetes diary : user-involved design of mobile self-help tools for peoplewith diabetes

    Get PDF
    Paper number 2, 4, 5 and 7 are not available in Munin, due to publishers' restrictions: 2. Årsand E, and Demiris G.: "User-Centered Methods for Designing Patient-Centric Self-Help Tools", Informatics for Health and Social Care, 2008 Vol. 33, No. 3, Pages 158-169 (Informa Healthcare). Available at http://dx.doi.org/10.1080/17538150802457562 4. Årsand E, Olsen OA, Varmedal R, Mortensen W, and Hartvigsen G.: "A System for Monitoring Physical Activity Data Among People with Type 2 Diabetes", pages 173-178 in S.K. Andersen, et.al. (eds.) "eHealth Beyond the Horizon - Get IT There", Proceedings of MIE2008, Studies in Health Technology and Informatics, Volume 136, May 2008, ISBN: 978-1-58603-864-9 5. Årsand E, Tufano JT, Ralston J, and Hjortdahl P.: "Designing Mobile Dietary Management Support Technologies for People with Diabetes", Journal of Telemedicine and Telecare, 2008 Volume 14, Number 7, Pp. 329-332 (Royal Society of Medicine Press). Available at http://dx.doi.org/10.1258/jtt.2008.007001 7. Årsand E, Walseth OA, Andersson N, Fernando R, Granberg O, Bellika JG, and Hartvigsen G.: "Using Blood Glucose Data as an Indicator for Epidemic Disease Outbreaks", pages 199-204 in R. Engelbrecht et.al. (eds.): "Connecting Medical Informatics and Bio-Informatics", Proceedings of MIE2005, Studies in Health Technology and Informatics, Volume 116, August 2005, ISBN: 978-1-58603-549-5. Check availabilityParadoxically, the technological revolution that has created a vast health problem due to a drastic change in lifestyle also holds great potential for individuals to take better care of their own health. The first consequence is not addressed in this dissertation, but the second represents the focus of the work presented, namely utilizing ICT to support self-management of individual health challenges. As long as only 35% of the patients in Norway achieve the International Diabetes Federation‟s goal for blood glucose (HbA1c), actions and activities to improve blood glucose control and related factors are needed. The presented work focuses on the development and integration of alternative sensor systems for blood glucose and physical activity, and a fast and effortless method for recording food habits. Various user-interface concepts running on a mobile terminal constitute a digital diabetes diary, and the total concept is referred to as the “Few Touch application”. The overall aim of this PhD project is to generate knowledge about how a mobile tool can be designed for supporting lifestyle changes among people with diabetes. Applying technologies and methods from the informatics field has contributed to improved insight into this issue. Conversely, addressing the concrete use cases for people with diabetes has resulted in the achievement of ICT designs that have been appreciated by the cohorts involved. Cooperation with three different groups of patients with diabetes over several years and various methods and theories founded in computer science, medical informatics, and telemedicine have been combined in design and research on patient-oriented aids. The blood glucose Bluetooth adapter, the step counter, and the nutrition habit registration system that have been developed were all novel and to my knowledge unique designs at the time they were first tested, and this still applies to the latter two. Whether it can be claimed that the total concept presented, the Few Touch application, will increase quality of life, is up to future research and large-scale tests of the system to answer. However, results from the Type 2 diabetes half-year study showed that several of the participants did adjust their medication, food habits and/or physical activity due to use of the application

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Evaluating the quality of mobile health apps for maternal and child health (MCH)

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Introduction Mobile health (mHealth) applications (apps) are increasingly accessible and popular. In 2015, over 60% of smartphone users used their phones to look up health related information. mHealth apps related to maternal and child health (MCH) are particularly prevalent and frequently used. As high as 73% pregnant women and new mothers reported the use of MCH apps, with 27% using them daily. Methods A cross-sectional sample of MCH apps was extracted from the Apple App and Google Play stores using a JavaScript Scraper program. A multivariable linear regression, and series of ordinal logistic regression assessed the relationship between MCH app characteristics and two outcomes, end users’ perceived satisfaction (star ratings), and intent to use (downloads). Next, theory-based content analysis reviewed the presence and use of behavior change techniques (BCTs) in popular MCH apps using the mHealth app taxonomy framework. Finally, a qualitative inductive analysis assessed user self-reported experiences, perceived benefits, and general feedback for MCH apps. Results Seven hundred and forty-two apps met the inclusion criteria. A large majority of MCH apps were developed by non-healthcare developers. Google Play store apps had higher user ratings; while, apps within health & fitness genre, with older updates, and no agerestrictions had fewer user ratings. Furthermore, lower priced apps, with high star ratings, in-app purchase options, and in-app advertisement presence had high downloads. And, apps belonging to medical and health & fitness genre had fewer user downloads. Content analysis revealed that popular MCH apps on an average include 7.4 behavior change techniques (BCTs) with a median of 6 BCTs. Apps developed by healthcare developers had higher BCTs present within app content. Qualitative analysis shows that consumers value apps that are low cost, with superior features, smooth technical aspects, high quality content, and easy to use. Conclusions Healthcare providers, app developers, and policymakers may benefit from a better understanding of MCH apps available in two popular app stores and may consider strategies to review and promote apps to consumers based on information accuracy and trustworthiness.2020-11-0

    Investigating mobile graphic-based reminders to support compliance of tuberculosis treatment

    Get PDF
    The phenomenon of rapid increment of the mobile phones can be utilized through supporting patients, such as those who have tuberculosis, for treatment adherence. This utilization will enable these patients to directly communicate their needs and requirements or receive health information such as reminder messages from healthcare facilities. However, the current mobile interventions, such as text messaging and speech reminder systems have limited use for people with low literacy levels. To overcome these challenges, this study proposed that the mobile graphic-based reminders be used to support tuberculosis patients to improve compliance with treatment regimens, especially for semi-literate and illiterate patients. A review of the literature and initial investigation study were carried out. The findings from the review were useful in understanding both the current practice of tuberculosis treatment regimens and the patients' needs and requirements. These findings, in addition, were referred in the choices of the components of the mobile graphic-based reminders to be implemented. A visual aid for communication theory was applied to the design and development of graphic-based reminder prototypes. An application prototype was implemented for the Android platform. Experiments were conducted to investigate the effects of an application prototype in supporting tuberculosis treatment. To measure the effect, the recovery rate was measured based on the effect of: (1) the graphic-based reminder group versus the control group; and (2) the graphic-based reminder group versus the speech-based reminder group. Data was collected using application event logs, interviews, field notes and audio recordings. It was found that treatment adherence of patients in the graphic-based group was higher than in the speech-based or in the control groups. It was further noted that the number of reminder responses in the graphic-based group was higher than in the speech-based group. Additionally, it was observed that patients in the graphic-based group responded sooner after receiving reminder messages compared to those in the speech-based group. The qualitative feedback also indicated that most patients not only found graphic-based reminders more useful to supporting their treatment than speech-based reminders and traditional care but believed that the application met their needs. This study provides empirical evidence that graphic-based reminders, designed for and based on patients' needs and requirements, can support the treatment of tuberculosis for patients of all literacy levels
    corecore