14,287 research outputs found

    Calibration of the AKARI Far-Infrared Imaging Fourier Transform Spectrometer

    Full text link
    The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be ±\pm 15% for SW, ±\pm 10% for 70-85 cm^(-1) of LW, and ±\pm 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.Comment: 22 pages, 10 figure

    Systems approach to evaluating Hydrogenomonas cultures

    Get PDF
    Hydrogenomonas cultures investigated for metabolic waste utilization in aerospace life support system

    Stellar (n,gamma) cross sections of p-process isotopes PartI: 102Pd, 120Te, 130,132Ba,and 156Dy

    Full text link
    We have investigated the (n,gamma) cross sections of p-process isotopes with the activation technique. The measurements were carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a Maxwellian neutron distribution of kT = 25 keV. Stellar cross section measurements are reported for the light p-process isotopes 102Pd, 120Te, 130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W, 184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to p-process energies by including information from evaluated nuclear data libraries. The results are compared to standard Hauser-Feshbach models frequently used in astrophysics.Comment: 13 pages, 4 figure

    Signal processing methodologies for an acoustic fetal heart rate monitor

    Get PDF
    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use

    Applications of dispersion in unsegmented flowing streams to calibration in atomic absorption spectrometry

    Get PDF
    Atomic absorption spectrometers require calibration because no absolute mathematical relationship exists between the analytical signal and the analyte concentration. The calibration function is complex, depending upon instrument parameters, operating conditions and the chemical nature of the sample matrix. Recalibration is necessary whenever these change. Because existing methods of calibration are tedious and sometimes inaccurate, alternatives are sought. Rapid, automated calibration is particularly attractive. The prospects of achieving it using concentration gradients generated in flowing streams, with microcomputer data processing, were investigated. [Continues.

    Clear sky fraction above Indonesia: an analysis for astronomical site selection

    Full text link
    We report a study of cloud cover over Indonesia based on meteorological satellite data, spanning over the past 15 years (from 1996 to 2010) in order to be able to select a new astronomical site capable to host a multi-wavelength astronomical observatory. High spatial resolution of meteorological satellite data acquired from {\it Geostationary Meteorological Satellite 5} ({\it GMS 5}), {\it Geostationary Operational Environmental Satellite 9} ({\it GOES 9}), and {\it Multi-functional Transport Satellite-1R} ({\it MTSAT-1R}) are used to derive yearly average clear fractions over the regions of Indonesia. This parameter is determined from temperature measurement of the IR3 channel (water vapor, 6.7 μ\mum) for high altitude clouds (cirrus) and from the IR1 channel (10.7 μ\mum) for lower altitude clouds. Accordingly, an algorithm is developed to detect the corresponding clouds. The results of this study are then adopted to select the best possible sites in Indonesia to be analysed further by performing in situ measurements planned for the coming years. The results suggest that regions of East Nusa Tenggara, located in south-eastern part of Indonesia, are the most promising candidates for such an astronomical site. Yearly clear sky fraction of this regions may reach better than 70 per cent with an uncertainty of 10 per cent.Comment: 15 pages, 13 figures, and 4 table

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10−146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page

    Correlated flux densities from VLBI observations with the DSN

    Get PDF
    Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made

    Terra and Aqua MODIS TEB Inter-Comparison Using Himawari-8/AHI as Reference

    Get PDF
    Intercomparison between the two MODIS instruments is very useful for both the instrument calibration and its uncertainty assessment. Terra and Aqua MODIS have almost identical relative spectral response, spatial resolution, and dynamic range for each band, so the site-dependent effect from spectral mismatch for their comparison is negligible. Major challenges in cross-sensor comparison of instruments on different satellites include differences in observation time and view angle over selected pseudoinvariant sites. The simultaneous nadir overpasses (SNO) between the two satellites are mostly applied for comparison and the scene under SNO varies. However, there is a dearth of SNO between the Terra and Aqua. This work focuses on an intercomparison method for MODIS thermal emissive bands using Himawari-8 Advanced Himawari Imager (AHI) as a reference. Eleven thermal emissive bands on MODIS are at least to some degree spectrally matched to the AHI bands. The sites selected for the comparison are an ocean area around the Himawari-8 suborbital point and the Strzelecki Desert located south of the Himawari-8 suborbital point. The time difference between the measurements from AHI and MODIS is <5 min. The comparison is performed using 2017 collection 6.1 L1B data for MODIS. The MODISAHI difference is corrected to remove the view angle dependence. The TerraAqua MODIS difference for the selected TEB is up to 0.6 K with the exception of band 30. Band 30 has the largest difference, which is site dependent, most likely due to a crosstalk effect. Over the ocean, the band 30 difference between the two MODIS instruments is around 1.75 K, while over the desert; the difference is around 0.68 K. The MODIS precision is also compared from the Gaussian regression of the double difference. Terra bands 27 to 30 have significant extra noise due to crosstalk effects on these bands. These TerraAqua comparison results are used for MODIS calibration assessments and are beneficial for future calibration algorithm improvement. The impact of daytime measurements and the scene dependence are also discussed
    • …
    corecore