1,000 research outputs found

    Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications

    Get PDF
    Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene-and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq

    RASflow: an RNA-Seq analysis workflow with Snakemake

    Get PDF
    Background With the cost of DNA sequencing decreasing, increasing amounts of RNA-Seq data are being generated giving novel insight into gene expression and regulation. Prior to analysis of gene expression, the RNA-Seq data has to be processed through a number of steps resulting in a quantification of expression of each gene/transcript in each of the analyzed samples. A number of workflows are available to help researchers perform these steps on their own data, or on public data to take advantage of novel software or reference data in data re-analysis. However, many of the existing workflows are limited to specific types of studies. We therefore aimed to develop a maximally general workflow, applicable to a wide range of data and analysis approaches and at the same time support research on both model and non-model organisms. Furthermore, we aimed to make the workflow usable also for users with limited programming skills. Results Utilizing the workflow management system Snakemake and the package management system Conda, we have developed a modular, flexible and user-friendly RNA-Seq analysis workflow: RNA-Seq Analysis Snakemake Workflow (RASflow). Utilizing Snakemake and Conda alleviates challenges with library dependencies and version conflicts and also supports reproducibility. To be applicable for a wide variety of applications, RASflow supports the mapping of reads to both genomic and transcriptomic assemblies. RASflow has a broad range of potential users: it can be applied by researchers interested in any organism and since it requires no programming skills, it can be used by researchers with different backgrounds. The source code of RASflow is available on GitHub: https://github.com/zhxiaokang/RASflow. Conclusions RASflow is a simple and reliable RNA-Seq analysis workflow covering many use cases.publishedVersio

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology.Comment: Minor update

    Application of miRNA-seq in neuropsychiatry: A methodological perspective

    Get PDF
    MiRNAs are emerging as key molecules to study neuropsychiatric diseases. However, despite the large number of methodologies and software for miRNA-seq analyses, there is little supporting literature for researchers in this area. This review focuses on evaluating how miRNA-seq has been used to study neuropsychiatric diseases to date, analyzing both the main findings discovered and the bioinformatics workflows and tools used from a methodological perspective. The objective of this review is two-fold: first, to evaluate current miRNA-seq procedures used in neuropsychiatry; and second, to offer comprehensive information that can serve as a guide to new researchers in bioinformatics. After conducting a systematic search (from 2016 to June 30, 2020) of articles using miRNA-seq in neuropsychiatry, we have seen that it has already been used for different types of studies in three main categories: diagnosis, prognosis, and mechanism. We carefully analyzed the bioinformatics workflows of each study, observing a high degree of variability with respect to the tools and methods used and several methodological complexities that are identified and discussed in this reviewInstituto de Salud Carlos III | Ref. PI18/01311Ministerio de EconomĂ­a y Competitividad | Ref. RYC2014-15246Xunta de Galicia | Ref. ED431C2018/55-GR

    Machine Learning Approaches for Biomarker Discovery Using Gene Expression Data

    Get PDF
    Biomarkers are of great importance in many fields, such as cancer research, toxicology, diagnosis and treatment of diseases, and to better understand biological response mechanisms to internal or external intervention. High-throughput gene expression profiling technologies, such as DNA microarrays and RNA sequencing, provide large gene expression data sets which enable data-driven biomarker discovery. Traditional statistical tests have been the mainstream for identifying differentially expressed genes as biomarkers. In recent years, machine learning techniques such as feature selection have gained more popularity. Given many options, picking the most appropriate method for a particular data becomes essential. Different evaluation metrics have therefore been proposed. Being evaluated on different aspects, a method’s varied performance across different datasets leads to the idea of integrating multiple methods. Many integration strategies are proposed and have shown great potential. This chapter gives an overview of the current research advances and existing issues in biomarker discovery using machine learning approaches on gene expression data.publishedVersio

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology
    • 

    corecore